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CONSTRUCTIONS OF MANY
COMPLICATED UNCOUNTABLE STRUCTURES
AND BOOLEAN ALGEBRAS

BY
SAHARON SHELAH'

ABSTRACT

This article has three aims: (1) To make the results of {12, VIII] on constructing
models more available for application, by separating the combinatorial parts.
Thus in applications one will only need the relevant things from the area of
application. (2) To strengthen the results there. In particular, we were mainly
interested in [12, VIII] in showing that there are many isomorphism types of
models of an unsuperstable theory, with results about the number of models not
elementarily embeddable in each other being a side benefit. Here we consider
the latter case in more detail, getting more cases. We also consider some more
complicated constructions along the same lines (K;,). (3) To solve various
problems from the list of van Dowen, Monk and Rubin [3] on Boolean algebras,
which was presented at a conference on Boolean algebra in Oberwolfach
January 1979 {most of the solutions are mentioned in the final version). Some of
them are not related to (1) and (2). This continues [10, §2] in which the existence
of a rigid B.A. in every uncountable power was proved. There (and also here)
we want to demonstrate the usefulness of the methods developed in [12, VIII]
(and §§1,2) for getting many (rigid) non-embeddable models in specific classes.

§0. Introduction

In §1 we present the abstract context. Clearly, e.g., K%, ¢, Ko, U are
variants of the same idea. It is, however, not clear whether it is worthwhile now
to find a common generalization. This section contains mainly definitions.

In §2 we do the combinatorial part; the point is that, in order to apply the
method, no understanding of the proof of these combinatorial facts is required
(though if you need another pair K, ¢ you may well have to understand them in
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order to do the required changes). This section can therefore be waived by a
reader interested in applications only.

At present, some of the constructions from [12] are not represented, in
particular on K, (on which the results are naturally stronger), and also K7,
K > Ng.

We prove, e.g. (by 2.1, 2.2, 2.6, 2.7, 2.8),

0.1. THEOREM. If A is regular, A > u Z N, or if A" = ), and p" <\, then K
has the full strong (A, A, ., Ro)-yr-bigness property for (K, ) = (K3, ¥..), and, if in
addition for regular A, A (Y0 <X) [6™ <A], also for (K, ¢)=(K:, o). If

W =x <A, x™=x, 2" Z A the full strong (A, A, i, Ro)-y.-bigness property holds for
X =tr, ptr.

We can replace (A, A, u, o) by (A, A, u, ), for functions which are strongly
finitary on P, if ©=" < A, and in the last case u™* = y. Note that without  the
case left out is: 3, = A << 35,4, 8§ is zero or of cofinality Ny; and A is singular (for

K&, o)
In §3 we apply 81, §2 to Boolean algebras.

0.2. ConcrusioN. If A™ = A >72% then there is a rigid complete Boolean
algebra of power A which satisfies the countable chain condition, and is
mono-rigid (= no non-trivial one-to-one endomorphism).

Proor. See 0.1, 3.16 and 6.3 for A >2%.

0.3. ConcLusion. For A > N, there is 2 mono-rigid B.A. of power A satisfy-
ing the countable chain condition.

Proor. See 0.1, 3.13, 6.11, 6.12(1).

0.4. Concrusion. If A > N, then there is a Bonnet-rigid (hence onto rigid and
mono-rigid) B.A. of power A.

Proor. See 0.1, 6.4, 6.10, 6.12(2).

In §4, we prove two results on Boolean algebras unrelated to §1, §2, §3: let us
call B A-narrow if among any A elements of B, two are comparable. We prove
that any Boolean algebra which has no dense subset of power <A, is not
A-narrow (extending a result of Baumgartner and Komjath [1] for A regular).

The second result is: for A singular of cofinality > N,, there may be a Boolean
algebra which is A-narrow but not p-narrow for p <A,

Lastly, in §5 assuming <u,, we construct, by [3] notation, a Bonnet-rigid,
endo-rigid indecomposable B.A. of power N,. For this we introduee a new
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notion: “a Boolean aigebra B absolutely omit a type p” (see [18] for a more
general discussion).

In §6, we close some loose ends: We deal with a variant tr(a) of ptr, and deal
with a variant of bigness (ind,-big).

By the proofs in [12, VIII §2] and 0.1 it is clear that

0.5. ConcLusion. (1) If K has the strong (2%, A, u, Ro)-~bigness property
T C Ty, T unsuperstable, | T,|= u then IE(A, T, T) = 2"

(2) This holds when A > u, except possibly when: 3; = A <35, & limit,
cf 8 =N, or & is zero, A singular, and (Vk < A)2° <2%

NotaTioN. We let m, n, k, | be natural numbers, i, j, a, 8, v, 8, £, { be ordinals,
where 6 is reserved for limit ordinals. Let A, u, k, x be cardinals, usually infinite.
Let 7, v, p be sequences of ordinals, /(n) the length of n, % (i) the ordinal in the
i-th place of %, n"v the concatenation.

A bar on a letter means we have a sequence of elements of this kind. If x, is
defined, %; = f[ﬁ] = (x,.(()), Xnqyy "% ); X ={(XoX1," ", Xac1).

Let ®a be the set of sequences of length 8 of ordinals < o. Let *“a = U, .0,
f2q = U, 0

DerNiTION.  For 1 a sequence of ordinals let orco (7)) (the ordinal content of
n) be {n(i):i <Il(n)}. Also for n a sequence of ordinals and sequences of
ordinals let

orco(n)={a: for some i, n(i)=a or for some i, I <n,

n(i)={ae, """, @), @ = ai}.

Similarly orco (%) = U< orco ().

BOOLEAN ALGEBRAS. We abbreviate Boolean Algebra by B.A., and use the
letter B for such an algebra. A Boolean Algebra has an individual constant 0,
and the operation a Ub, aNb and a —b. A function f from B, to B; is an
embedding if it is one to one and preserves those operations. Sc a B.A. B has a
maximal element 1p, but it is not necessarily preserved by an embedding. The
infinitary operations are defined similarly, and f is a o-embedding if it commutes
with ﬂm,, U< too.

For a set A of elements of a B.A., (A)s is the subalgebra generated by
AU{lp},and Blb={a:a=b} (a=b means aUb =b), so 1g, =b.

Let —b be 1—b; and let b° be b if e =0, —b if ¢ =1.
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§1. The framework

1.1. ConTEXT. Let x, p be infinite cardinals, x regular, F.; a B-place
function symbol, for « <y, B <k L ={F,p:a <u,B <k}, so L =L(u, k).

Let K be a class of models which we shall call index models (i.e., they serve as
a set of indices). Members of K shall be denoted by 1, J perhaps with indices. For
I, €K, a <a(0), £, L, is the model in K whose set of elements is U. L x{a},
the relation R is {{t;, @) -+ - {t,, a): I, E R[t; - - - ]}; similarly for functions (so we
allow partial functions) and individual constants are treated as one-place
functions, and we have the relation E ={{{t, a),(s,a)):s,t € L. }.

For 1€ K, M(I) is the free L-algebra generated by I, expanded by the
relations and functions of I, and P, where P’ = I. M*(I) is any expansion of
M(I) by a well ordering <* of [ M(I)|—|P|, such that 7 = F, 5 (7, - - - ) implies 7,
<* 7. So M7} (1) is not uniquely defined.

The support of 7(as,"--)E M) is {ao, -} C L

If the identity of u,x may not be clear we shall write M,..(I), M% (I).

Let @b denote sequences of elements, usually of I or M(I). A term of
L{u,«) is denoted by 7(X), ¥ a sequence of variables of length <«. Let
7(X) = (o(X), 11(X)," - - ). Hence a =7(b) means a, = 7:(h). Note that every
sequence @ from M(I) of length < x has a representation 7(b), b €~ |I|.

We call @ finitary if @ =7(b), b €“7|1|: we call it strongly finitary if in
addition 7 has finitely many subterms.

1.2. DerINITION.  We say that T € K is (X, y)-unembeddable in JEK
provided that: if f is a function from I to M(J), A CJ, | A | < k then for some
sequences @, b from I (i.c. of elements of I), of length I(%) = I(y), I =¢(a,b]
and f(a)=7(co, "), f(b)=7(do, "), ¢, d €EJ and {co,* - *), {do, - - -} realize
the same quantifier free type over A in J. For such f(d), f(b) we write
f(@)=a f(b)mod M(J). If the identity of u,« is not clear we write (u, x, ¢)
instead of ¢. If we write $(X,¥,2Z,0,---), the meaning is clear; similarly the
meaning of -embeddable. We omit ¢ if it is A{@(X)= @(¥): ¢ quantifier free}.

1.3. DerINITION.  We say that I € K is strongly ¢(%, y)-unembeddable in
J € K provided that for any M*(J), if f is a function from I to M*(J), A CJ,
|A|<k then for some sequences a,b from I, kd¢(a,b], f(a)=7(co "),
f(b)=7(dy," - - ), {Co, - * ), {do, - - - ) realize the same quantifier free type over A
in J, and for any subterms 7,7 of 7, and o(ay,---)E M), a, - -EA,
Ti(Co, ) <* o(an,---) ff 7ildo, - )<* a(ay, --); similarly for *>, and
71(Co, * -+ ) <* To(Coy - -+ ) ff Ti(do, - < + ) <* To(dy, * - + ). For such f(a), f(b) we write
f(@)=a f(b)mod M*(I). We use the abbreviation of 1.2.
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REMARKsS. (1) So strongly embeddable is a weaker notion than embeddable.
(2) The “over A” in Definitions 1.2 and 1.3 can be omitted without harming
the paper.

1.4. DerNiTiON. (1) K has the (x, A, u, x )-¢-bigness property if there are
LEK (i<x),|L|=A L =L(u,«)(see1.1)and for i # j, I, is yy-unembeddable
into I,

(2) K has the strong (x, A, u, k )-y-bigness property if there are I, €K (i < y),
[I|=A L =L(u, «)(see 1.1)and for i # j, I is strongly -unembeddable into I,
(3) We add in the notions above “the full ...” if we replace I, by Zo . a<y L.

(4) We add in the notion ““... property for f such that ...” if we modify
accordingly the unembeddability, i.e., restrict ourselves to functions f
satisfying ... .

(5) We also say that the pair (K, ¢) has such properties.

(6) We say that K is almost closed under sums for A (and ) if for every I, € K
(for a <ao=A), L. of power = A, there are J, g, h. (a < ay) such that:

(@) JEK, |J|=,

(b) h.:I,—J and for any xo," ", yo,* - € L,

L = [(x0," =), (yo, - - - )] implies J b= [ (ha (x0), -+ )], Cha(yo), )],

(c) g:J—>2,<., 1. such that, defining

R={n i midimelverandi<jic( I L)x( T 1),

a<og a<ag

the following holds:

for any xo,- -, yo,* - - € J, if (X0, * * ), {yo, " - - ) realize the same quantifier free
type in J, then {(g(xo),- ), (g(yo), * - ) realize the same quantifier free type in
(Ca<ay Ls R).

We say K is essentially closed under sums for A if, in addition, Rang h,,
Rang g is a union of equivalence classes of = mod J, = mod (Xa<a, L, R) resp.

REMARK. We could have made, e.g., h, : I, = M*(J), or in the definition of
sum expansion by R, without serious changes in the paper.

1.5. Ceam. (1) If K is closed under sums, then the full (strong) (x, A, p, kK )--
bigness property implies the (strong) (xi, A, u, K )-Y-bigness property, where x, =
min {2%,2"}.

(2) In (1), the “strong” version instead of “K closed under sums” it is enough
to assume that K is essentially closed under sums for A, .

(3) The classes defined below (K, Ko, Ki:) are almost closed under sums.
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(4) The relations above (in 1.4) have obvious monotonicity properties in x, (., K;
and for all our K, for A too. For example

X =x' 2 [(x', A, p, k)-bigness = (x, A, 1, k )-bigness],
w=u',k =k > [(x A u', k')-bigness > (x, A, 1, k)-bigness].

ProoF. (1) Assume K has the full (x, A, u, x)--bigness property.
Case 1. x=A ForI'Cy let

Jr-_- 2 Ia.

a€l

Let H be a collection of subsets of y such that |[H|=2* and T#AEH >
F'ZA. Suppose I, A€H, f:Jr—>M(Js). Choose «a €I'—A. Thus
fIL:1,—>M(Zs., 1) and the desired conclusion follows.

Case 2. A < x. Take H a family of subsets of A and proceed as in Case 1.

(2) As K has the full (x, A, p, k)-i-bigness property there are I, (e < y)in K|
each of power A, such that I, is ¢-unembeddable into 2, ., I. By the assumption
of (2) (K is essentially closed under sums) for every I'C x, [T|= A let Jr, g', h&
(a €T)satisty (a), (b), (c) of Definition 1.4(6) for £, r L. As in the proof of (1) it
suffices to show: (x) if [, ACy, [T|=A, |AISAT-A#G, f:Jr— M*(Jy),
ACJs |Al<k, then for some ab€Jr, Jr=¢l[ab] and f(a)=a
f(b)mod M(J.).

Choose & €I'—A. Let F* € L(u, k) be a one-place function symbol. We can
define a model m™*'(X;ea I;) so that:

for every x, y €L, (x,y)E R implies M*(Z;cs L) F*(x) <* F*(y),

for every xo,-:, yo,r--€IL and terms T, o M¥YEealE
T(X0, - )<* o (yo, - +) implies M*'(Zies L)E 7(F*(x0), - )<* o (F*(y0),***).
Now define ga: M*(Eicat) > M*"(Zics ) by gal(r(x0,- )= 7(F*(x0), - ).
Let g% = gag”.

Consider the sequence of mappings:

Lo —— Iy —— M*(J) —/— M*'(Z 1)

€A
So gifhe: I, > M*¥(Zica ). As Zica I is a submodel of 2., I, also w.l.o.g.
M*(Z.ea ) is a submodel of M*(Z;«, [); but we know I, is ¢-unembeddable
into 2., I. Hence there are %, y € L. such that
i) L - ¥[% 7], |
(i) gXfhu(X) =gza g ifho(y) mod M* (Zica ).
By (i) and (b) from 1.4 (6),
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(iii) Jr = ¢[%', 7'] where ' = h(%), ¥ = ho(¥).
By (ii) and the definition of x', y’
(iv) A(f(X) =¢3a 8 A(F(¥)) mod M (Ziea I).
By (iv), (c) of 1.4 (6), the definition of M*(Z,ca L), and of g%, ga,
(v) f(x) =af(y") mod M*(Js).
So we have proved (*) (by (iii) and (v)) which suffices.
(3)-(4) Left to the reader.

Now we define the K and ¢ in which we shall be interested:

1.6. DeriNITION. (1) K is the class of I, such that:

(a) The universe of I is a subset of ““A for some A, ctosed under initial
segments.

(b) The relations of I are P, ={q €1:1l(n)=i},foralli =k, < where n < v
iff p=v[l(n) and <={n%a),nBN:ne)ELNB)ELa <P} and
Eq.={(n,v):mii=vlin€Lv &I} and an individual constant ( ) denoting
the empty sequence.

(2) We  let (X, 7) = Vi [ Pia(Xo)A Pra(yo)A P (x DA Eqi (X0, Yo)A Xo #
YoAX1 = YiAXo <€ XA Yo < Xg]-

(3) We let Yeen(X, §) = [ Aw (Xu EQuXu i1 A P2 (X )A Yr EQuYn 1A Pu(yn))
AEX)Ax Eguxaa T (3y) Ay Equy. ]

REMARKs. (1) We can replace . by

v [ A BINPOIA AT = Yy Aiss = Yoo A
j=i

i+l<e Lj=siet

Px(xi+r)/\ A (xaé Xg € Xit2A Yo <€ y;a)/\xi+17£)7i+1]

a<f=a+l

without changing much the paper.

A similar remark holds for ¢,. (see Definition 1.8 below).

(2) We thought that the existence of the full strong (A, A, Ro, No)-1-bigness
property of ki extracts the combinatorial content of [12] and the related
constructions, but a question of Grossberg reveals that it seems that is not the
case, concerning [20], theorem 1.2. Consideration of this suggests:

DerNITIONs. (1) I € k5 is *-unembeddable into J €k}, if when x is a
regular cardinal, < a well ordering of H(x), I, J, f, belong to H(x),
f:I— H(x), and p € H(x) and we define, for n €“7A, N, <(H(x),€,<) by
induction on I(n) as the Skolem hull in (H(x),€,<) of {p}U{n(l):I<
I()} U{Nqu: I <1(n)}, then for some n €L I(n)=w and for every v €J of
length o either (3k <w)[¥kEN,] or @l <w)Vk <w)v[h € N,ul.
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(2) We define (u, , *)-unembeddability similarly, only N, is the smallest
elementary submodel of (H(x),€,<) including {i:i<u}Ui{p}u
{n(), Nyu : 1 <1(n)} and closed under taking sequences of length < «.

(3) The (full) (strong) (A, x, s, K )-*-bigness property is defined as in Definition
1.4. Now the proofs in §2 on (x4, $..) work also for this notion: it implies the
previous one; and we can make similar changes to bigness properties of

(K ;’tr’ l,[/pu)-

1.7. DerFmniTioN.  Let K, be the class of linear orders (X, y)=
[xo< =< )’O]Ax()# xl/\)’()# Yi.

1.8. DerINITION. K7, is the class of I such that:

(a) The set of elements of I is a subset of {n :  is a sequence of length = «,
for i+1<l(n), n(i)=(a,B), @« <B, and for i+1=1I(n), n(i) is an
ordinal}. Alsoif n €L i +1<I(n), n(i)={(a, B) then (n i) (a)E I and
(1Y el

(b) The relations of I are: n<€v™= 5 =v[I(n), P,={n:1(n)=i},

< ={nv):lm=1)=i+La)<v@)nli=vli}
Eq ={n,v):inli=vli}
and  Suc, ={n,v):nli=viii+1=I(n),v{)=(a,B),n)=a},
Suce ={(n, v):m1i=vli,i +1=1(n),v(i)=(a B)n(i) = B},
an individual constant ( ), and functions
Res.(n)=nln"(a)Resi(n)=n1n"(B) if n(n)={(a,B),
ll,plr(-fa )_’) = Vi+l<p<[Pi-H(x())/\Pi+](y0)/\Px(xl)/\xl = yiA Suce (xo, xl)/\
Sucg (yo, y)rxe <t yol.

1.9. DerNiTION.  For T€K%, a, b€ |M,.(I)|, a an ordinal, a=
b mod(M,..(I),a) if @ =7(co," ), b =7(co,**). @ ~b mod M, . (I), and for
any i, and £<I(c) if c(§)<avdi(é)<a then ¢ (£)=d(§). Similarly for
M* (I) and for K%.

1.10. DeFINITION. (1) A model N is representable in M(I) if there is a
function f:|N|— M(I) such that if ao ‘-, @, bo,- b1 EN and
(f(ao)- -+ )=(f(bo)," - -)mod M(I) then (ao, - - ), (b, - - - ) realize the same quan-
tifier free type in N.

(2) We can replace everywhere above M(I) by M*(I).

(3) We say “N is strictly representable in M(I)” if in addition ao=
bomod M(I) implies a, € Range (f) & b, € Range (f).
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§2. Constructions for proving the bigness property

We try here to get theorems in ZFC: extra set theoretic assumptions of course
simplify the situation (e.g., Theorem 2.1 holds for A singular if {g <A :pu is
regular and there is stationary S C{8 <pu :cf 8 = x,} with no initial segment
stationary} is unbounded below A).

2.1. THEOREM. If No<A, A is regular, p <A, A =\* then K, has the full
strong (A, A%, u, Ro)-,-bigness property.

Proor. In fact this is proved in [12, VIII 2.1], but similar theorems are
proved here later, e.g. 2.2.

2.2. THEOREM. If u <A =\*, (VO <A)[0™ < A], A regular then K}, has the
full strong (A, A%, u, Ro)-,.-bigness property. Moreover, it has the full strong
(A, A*, u, k)-bigness property for f such that [P,(a) > f(a) strongly finitary]|
provided that p=* <A.

REMARK. We can replace “strongly finitary” by finitary if we are content with
“the full (A, A, i, k)-bigness ...” or we change slightly the definition of M*(I).
Similar remarks apply to the other theorems in this section.

Proor. It is well known that § = {8 < A : & a limit ordinal of cofinality N} is
stationary. Hence by a well known theorem of Solovay there are stationary
pairwise disjoint §; C S (for i <A), § =U,., S. Let

Il' = {<<aO, B0>, T <an—2, Bn—Z)a an—l) :
a;, B ordinals <A*, oy < B <y for I <n—1 and n < w}
U {0, Bods** *»{0tms Bu)y* )1 @ < B < @1 <A, and U, a0, € S}

and L = L(p, k). Trivially [ L |=A*, as A= A.

We shall prove that I is strongly ¢,.-unembeddable into I; =X, I, by an f
such that [a € P > f(a) is strongly finitary], assuming u =" < A, thus finishing
the proof. We concentrate on the case A = A*.

So suppose f is a function from I into M*(I;) where f(n) is strongly finitary
for n of length w.

For any a €I let f(a)=7.(C.) and a(a)=sup{y <A :y appears in C.};
clearly a(a)< A. Hence the set C={§ <A :if a €I, orco(a)= 6 then a(a)<
8} is a closed unbounded subset of A. Also for any 1 = {{ao, Bo), * * * {@n-1, Ba1))s
o< Bo< ;<< B.1<A, the following equivalence relation of A : aE/B iff

(o f@m e, f B f™ ey =(--, f(n 1)), f(nl1B0),
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coe, f(n(BYy mod (M*(I7), B.—1) has < A equivalence classes. Hence for every
y <A there i1s B(n,¥y)<A, such that for any B, y<B:<A there is f,
vy < B><B(n,v)s.t. B,E]B,. Again the following is a closed unbounded subset
of A:

Ci={6€C . if as<Bo<a;< - <P, 1< n<w,
1 = {{ao, Bo), " (-1, Bao1)), ¥ < & then B, v)< 8}

So we can find § € C,N S; (remember §; C S is stationary); so 8 has cofinality
No, and let 8, < 8,., < 8, 8 = U, 8.. Now we define by induction on n, @, Ba,
such that:

(*) lf M = ((a(], B()>, ct (an»l, Bn—1>>, then anE{nan and Bn; Bn—l < (e 7% < Bn < 6

This is easily done — we let y, = max{8,, B.—1}, Bn = B(1, ¥-)+ 1, and «, is
chosen by the definition of B(7.,v.) such that v, < a, < B(Mm Yu), BEh.an

Let 77 be the unique 7 € L, N “(A X A), n [ n = n, for every n (n exists by the
definition of I) and let f(n) = 7,(vo, Jo), - * *» V=1, Jur)), where i# i, j < A and
v, € I,. Note that k is finite because f(n) is finitary.

Let V=, .orco(n). Because the S; are pairwise disjoint and 6 €S,
sup [orco () N 8] cannot be § (even when (1) = w). Hence V N & is a bounded
subset of 8, hence bounded by some 8,

Now let

A, ={1(¢,): for some v € {0, (an), N (Bm): M < n},

f(v)=r.(¢) and 7, is a subterm of 7,}.

So A, increases with n. Let B = {7,({jo, vo), - * ): 71 a subterm of 7,}. As f(n) is
strongly finitary, B is finite. Remember <* is a well ordering of M*(I7), so there
is n(1) such that for every b € B:

() beU.c.A, > bE AL,

) min{a € U,., A, : b =* a} belong to A,q), if there is such a.

Let n > n(0), n(l), now (n."(a.),n) and (n."(B.), n) exemplify the require-
ment in the definition of strong y,~-unembeddability. We check two representa-
tive cases. Say f(n.(a.)) = 71(¢), f(n.(B.)) = 71(d). We get the same term as
a.E’, B

We want to show that (¢, {{vo, Jo), * * *, {¥x—1, Je-1))) = (C, €) realizes the same
quantifier-free type as (d, &) =(d,{(vo, jo)," - Vo1, o))y, and that the <*
condition holds. Suppose c¢; < v.. By the choice of C, orco (¢;) C 8. Hence for any
{ <), ()= 1({) < 8n0 < U < Br = Bu-1, 80 Gi(E)=di({) as a.Ef B
Thus ¢; = d;, so d;< v,
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Suppose 7:(C)<* 15(€), 7. a subterm of 7, and 7; a subterm of 7,. Thus
7€) € A, and 75(¢) € B. Suppose 73(€) =* 7:(d).

Let a € U,., A, be minimal such that 75(¢)=* a, thus a € A,,. Now
:(€)<* a and n(1) < n, so a.E’B, implies that 7(d) <* a but 7:(&) =* 1:(d), so
this contradicts the minimality of a.

For the following see e.g. [13].

2.3. CLamM. For w-sequences of ordinals m, v let 1 <,v mean {n:n(n)<
v(n)} is cofinite. Note <, is a partial ordering.

() If n (i <8)is <,-increasing, cf & > 2", then it has a least upper bound 7
(ie. v<,qmiff Qi<d)v<,m).

@) If A =2, A0 A < has1 < A, A, regular, X > 2", then there is a subsequence
Ain<ow)of (A :n<w), aregular \* Z X and n, EN1 A}, for i < A*, such that:
i <j=>m <,m; for 8 <A*, if cf8>2%, n; is the least upper bound of (n; :i <
8) (for <,) and (A.:n < w) is the least upper bound of {m;:i <A*), Note
AF= AT

ProoF. (1) We choose by induction on i an w-sequence of ordinals »; such
that

(a) for no j<i, v =, v,

(b) forno j<§, v =1y,
where we first set vo(m) =sup{n:;(m): i < §} for all m € w. We cannot define »;
for every i < (2")", for otherwise by the Erdés-Rado theorem, since by (a)

(@) T = U {lij}:i<j <@, n(m)<uim)

we would get a descending w-sequence of ordinals, contradiction.

So let v; be defined for i < a only, where a <(2™)". Let A ={v(]): [ < o,
i <a}, and for every j<§, let n% € A be defined by n*(n)=min{{ € A :
{ Zm;(n)} for all n < w. This is possible by our choice of v,. Clearly n; =, 0%,
and there are just =(2%)*<cf§ possible n*, hence for some n%=n* for
unboundedly many j < 8. We check that n* is the required least upper bound.

Clearly if (3i < 8) v <, n;, then v <, n*. Now suppose (Vi < 8) v £, n.. Then
(Vi < 8) v £, so for some i < a, v; =, v. Suppose v <, n* and n* = . Now
Vn (m(n)<n*(n) iff v(n)<mn(n)). Hence, since v, =,v <,m* we have
v; <, M, contradiction.

(2) Choose inductively on i, n; €Il,<, A, such that n; <, n; for j <i. As n; # n;
for i # j, it follows that for some i < |Il,<.,A.|", 7 cannot be defined; so suppose
8 is the first such i We can easily prove that & is limit (otherwise
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Ns-1<p {Ms-1(n)+1:n < w), contradiction) and of cofinality > A (otherwise
cf8=A hence cf8 <A hence cf& <A, for some n; let 8 = U, si({) with
i(¢)< 8 for { <cfé, and let ns(m) be 0 for m =n and sup{ny(m)+1:{ <
cf 8} for m > n).

So ¢f§ > A =2%, so by 2.3(1) (m: : i < 8) has a least upper bound n*. Clearly
w.lLo.g. n*(n)= A, for every n. If n* <, (A, : n < w) then modifiying n* on a
finite set we obtain a function which can serve as 75, contradiction to the choice
of 6. Hence A ={n : n*(n)= A(n)} is infinite; let it be A = (n, : k < w), strictly
increasing. Let Ay = A, and ni=(n(m):k <w). Clearly (ni:i<8) is <,-
increasing, and it is easily checked that (A;: k < w) is the lLu.b. of (ni:i <§).
Let A*=cf§ and let i({) ({ < A*) be increasing, continuous and unbounded
below 8. We define n; for { < A* as follows. For { =0, { a successor, or cf { =2™
let 0= nie). For cf { > 2% let '} be the L.u.b. of n/ for j < ¢ (by 2.3(1)); for all
n < wlet n'{n)=min(n"}(n), nic(n)). Clearly A*, n'i (i <A*), A;(n < w)are as
required.

2.4. CLAaM.  Suppose A is singular, cf A > Ry, f is a function from “~ X 1o finite
subsets of “=\ (or even subsets of “=\ of power <cfA). Assume A =00 Ai, A;
strictly increasing and continuous for i <cf A; we suppose A; = 2., Ai., where
A < Aio, VR (e < Ainrr, hin E{ATj<iD). Let S ={i <cfA :cfi =Rq}; recall
that S is stationary.

Then there is a closed unbounded C C cf A such that for alli € C N S there is a
T such that

(1 TC U collncndim 3 { YE T, T closed under initial segments ;

@ VneT(m=n>|{a <A.:nYa)ETH=A,);

BG)YnET (f(n)C A

Proor. For each n €“”A choose g(n)<cfA so that f(n)C U {*%{:¢<
Aget- Then instead of (3) we want

3) VneT (g(n)=i).

Now we define a game G; for each i < cf A such that cf i = R, the game is of
length o, and in the nth move, player I chooses A, C A, with | A, | < Ai., and
player II chooses m. € A;.. Player II wins if (I <n = n <m.), 7.& A., and
g({Mo, - - ", M) = i; otherwise player I wins. Now

@) if i<cfr, cfi=8o, g{ »=1i, and 11 has a winning strategy, then a
desired T exists.

For, let 1 be a winning strategy for II. Thus Vn € w, VA €""'PA such that
Vm =n (Am = [A;»m ]<Ai"“) we have na e Ai.n, TNAm+1) < Na for all m< n, Na E A,.,
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and g((Man, ", Narwsn)) =i. Then T ={{nap," -, Narw+) - such AYU{( )} is
as desired. Thus we may assume

(5) S'={i <cfA :cfi =w and 1 does not have a winning strategy for G.} is
stationary in cf A.

Now the game G; is open, so by the Gale-Stewart theorem is determined.
Hence for each i € S’ choose a winning strategy F; for I. Thus

(6) Vn € w, VT] EH,“<" Ai,m (F‘(n)e[)\l"]<)‘,n);
(7N Vn Ellncuhim either (a) Al<n<ow (m=Zn.) or (b) In<o,
nmEF(nin)or (¢)In<w, gnln)>i

Now choose a regular k > 8, so that g, (Fi:i €8'), (A7 :i <cfA)E H(k).

Remember H(x) is the family of sets with transitive closure of power < «, and
that (H(k), €) is a model of ZFC™. Let < be a well-ordering of H({«x).

For all & <cfA let A, be the closure of 8 U{g,(Fi:i €S, (A7:i<cfA"}
under Skolem functions within the structure (H(x),€,< ). Then C={6 <
cf A : As Ncf A =8} is closed unbounded in cf A. Thus there is § €S’ and an
elementary substructure (N,€,< ) of (H(k),E,< ) such that |[N|<cfA
and NNcf(A)=46, with g, (Fi:i€S'), (A7:i<cfA)EN, clearly AT €N iff
i <8, hence A;» belongs to N for each m. However 8& N, hence {Asm:
m<w}&N.

Now we define 1 €EIl,e,Asm s0 as to contradict (7). Suppose 7., EN
constructed for all m < n. Using elementarity and absoluteness of suitable
formulas we see that the set

A*= U {F((no, s M) 1] <cfA,{m0, -, Qo) EDOmM E, j E S,
/\j.o = As0," " s )\j,n—1 = Asin—15 )\,',n = /\.s,..}

has power <A;, and is in N. Since Ja (.1 <a <Az, AaZ A*) holds in
(H(k),€,< ) it holds in (N,€,<) and this gives 7, this completes the
construction, and it is easily seen that (7) is contradicted.

REMARKS. (1) Rubin and Shelah [9] deal with such theorems for their own
sake.

(2) We can get in this direction more resuits. If 2* <A, A, regular,
then we can find a closed unbounded set {a(i):i <cf A}, a(i +1) successor and
TC® A, such that: ( YET, n€T, Max[orco(n)]<A.<A; implies
{@ < A;:m"(a)E T} has power A; and implies also g(n)<j.

(3) In (2) we can replace “2** <A™ by “there is a family S of closed
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unbounded subsets of cf A such that | S | < A, and every closed unbounded subset
of cf A contains one of them.”

On the other hand, if wu =™ in V let us add A > u generic closed
unbounded subsets of u (by Q ={f : Dom f a subset of A of power < u, f(i) the
characteristic function of a closed bounded subset of w}, the characteristic
function of G is U {f(i):f in the generic set}).

Let {C,:m €A} be another enumeration of {C, :i < A}, and define g:

g (a))=min{i <cfAr:i EC, A >a}.

Clearly for this g the conclusion of remark (2) fails.
(4) We can generalize Claim 2.4 as in [16], [17], by attaching a filter for each
node, i.e.,

2.5. CLAM. In 2.4, suppose that for n €“”A, D, is a (cf A)"-complete filter
on {n{a):a < u} which include {n"{a): ay<a < pu} for each ay<p, then in
the conclusion we can demand:

(C) for n€T. {n™a): na)E T a <A} ~ADmodD,, .

The proof is the same, only in the definition of the games G, instead of
|A.| <A, we demand A, =Zmod D, .,

Of course, the fact that we use the tree “~ A is just for notational convenience.

An example of such a system of filters is that for

I= {<<a0! Bods @1, Bat)) T @, Bi<Aforli<nn<w}

it is natural to define for n € I, u < X a filter D, as the filter on {n"{«a, B)):
a, B < A} generated by the sets {n"((a, B)): @, B < A, aEB} for any equivalence
relation E on A with < u equivalence classes. If w isregular, y <pu =y~ <pu
then D, , is k-complete.

2.6. THEOREM. Suppose A is singular, A" = X. Then for any u, u"o <A,

(1) K3 has the full strong (A, A, u, Ro)-Yr.-bigness property,

(2) Kp« has the full strong (A, A, p, Ro)-¢-bigness property.

(3) Suppose in addition u=" < A,  regular, then in both cases we can replace N,
by «, if we add ““for f which are strongly finitary on P,”.

We concentrate, usually, on (1). For the changes we need for (2) see the proof
of 2.8. We could have used the partition theorem on I € K, but prefer another
way.

Case A. X =2 = y"; pMo< A, A >2%

PrOOF. (1) w.lo.g. (Vxi<Xx) X"<Xo X =ZncwXe X« @ SUCCESSOT, X, =
(x=)" 1 <xo
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We let I'=U,cullicayx, I'=I°UTi<.x, and we shall choose I, (a <A),
I°C I, C I'such that (I, : @ < A) will exemplify our conclusion. For this we have
to deal with all pairs & < A, F: I, > M% . (2p<is-a Ip); there are too many such
pairs, however the number of pairs (&, F | [’y is =A% = A, so let (e, F;): { < A)
be an enumeration of all such possible pairs each appearing A times. Define by
induction on { <A, L (@ <), J.; (@ <A) such that:

(@) L., J.. are disjoint subsets of I'— I° increasing with ¢,

) Za(| Ls [+ e D= x +1 £,

(if 1°cr.cr', L.cl. J.,NI,=Z for a<A and F:I,—
Mo Zperpa, 18),

F extends F; then the conclusion of Definition 1.2 is satisfied (for K, ¢ = ..).

Clearly it is enough to carry the induction (and then I, =I1°U U, L,
(@ < A) exemplify the conclusion).

So let us do the {-th step (so we suppress { as an index). Let

r=% UL, I*=U UL, u{g):g<i}
o fra

(so I universe will be U gospra, (Ueci L X {81); w.lo.g. F; is into M % (I7).
We let (,a)ll =(nlla).

Remember that the universe of I' = Sgcrpra, Uec foe is U{le x{B}: £<¢
and B <A, B# as}. Let, for (n,B)EI", (n, Bk =(n 1k B) and I(m, B))=
I(n). Let F(n) be the set of » € I" “appearing” in F;(n). Calla T C I" big if T*
is closed under initial segments, {( YE T and for every n €T, I(n)=k,
{i : »"(i) € T} has power x.. By Rubin-Shelah [9] theorem 4.9 there is a big
TCI’and A, for each n € T such that

(1) A, is a countable subset of I", which includes F(n),

Q@) if v=nlk=mnlk nk)#nAk), €T and n, €T, then A, NA,, =
A..

We can easily find 7', B, (n € T’) such that:

(@) T'CT is big,

(B)for every v = n"(i) € T' there is p, satisfying:

BYp, =7n"G)ET, j <i

B2)p. T, but (Vj <i) [n"(NET' —j<j],

(B3) f(v), f(p,) realizes the same quantifier free type over B, in I”,
(84)B. =B, UA,UA,, B, countable closed under initial segments.

The definition of T.=T'N(U,z.licmx:) and B, (n €T,) is done by
induction on n.

Clearly
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) ifn=wll=wlln €T, €T, r(l)#v)then B, N B.,= B,

Hence for all n ELIm T (={v €I'—I":(V]) vl ET'} except) =|{|+x
many, the following holds:

foreveryp €I, l(p)=w forsomek m < w,

plkE€Bym, plk+1)E U B,
l<w

(*+)

Let n, €Lim T’ satisfy (**) and we define

U Ioe Uing} B = a,
£<g

L, =
U L. otherwise.
£<¢

Jog =UcJoe Ulm:im €= 1", for every k<w(nlkg)eU,.,B,: but
& Ly}

Let us prove we have defined I, Jo; (8 < A) as required. Now (a), (b) are
easy, so assume ['CI.CI', L. CI, J..NI,=&, F* extend F, F*:I,—
M w, (Cpcrpra, Ip). Now F¥(n,)is 7(ve, - va), m €I, n is finite.

We can assume (letting n* = 1;) v € U, B,1 iff [ = n(0). By (*#) for each
I < n(0) for some k()< w.

vlk(DE€ U Bytm, ulk(D+1)& U B,y

For m < let B,, = B,+.. Choose m(*) < w large enough so that v, € B, for
I=Zn(0), vlk(l)E B, for | <n(0), and for I < n(0)

Min {a U rk(l)A<a) € By a = Vl(k(l))}
=Min{a : n k()@)€ U B,, a = n(k(l))}

(or both are undefined).
Now (n*,n* [ m(*)), (n, Py are as required.

Case B. A =A™ is strong limit singular

PrOOF. Choose A; (i <cfA) such that:

(a) A; is increasing continuous with limit A, 2¢)" = A,,

(b) As is strong limit for limit & <cfA,

() Aisy is a successor cardinal moreover x* < A for y < A.

For each limit8 <cfA, cf 8 =N, choose As, E{A1:] <8} As = 2w Asins
Asn < Agpnsi.
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We shali choose ;. (6 <cf A limit, cf 8 =Ko, a@ < As), Is, Cll, <, As., and let
8 < cf A limit, As > a} such that:

() if 8 <cfAislimit, cf8 =Ny, @ <As, F: L. > M}, (Zp<s, 54 J) and some
big TC U, ., Mic. A, for every n € T,

F(”I)E Mﬁ"‘o (ZB<'\5.B;‘a (IB N Ui<6wg/\i)),

then the conclusion of Definition 1.2 is satisfied.
This is enough by 2.4 and the proof that it can be satisfied is like that of Case
A

Case C. p = xlo< A =2¥
The proof is by 2.7 (for 2.6(1), (3)) and 2.8 (for 2.6(2), (3)).

2.7. THEOREM. Suppose A" =\, u = A, Then

(1) K has the full strong (2', 1", u, No)-i~bigness property.

(2) If in addition A™" = A, « regular, then we can replace N, by « provided that
we add “for f which are strongly finitary on P.”.

REMARK. The interesting consequence is when we replace both 2* and A* by
some y, AT =y =28

PrROOF. Let §* C{6 <A™ :cfd =Ny} (for @ < A) be pairwise disjoint statio-
nary subsets of A”. Let A; be a subset of A for i <2 such that no one is included
in a union of countably many others (in (2) — less than x many); such A, (i <2*)
exists by Engelking and Karlowicz [4].

Let S = U,ca 8% I =“"(A") U {5 : n an increasing w-sequence of ordinals
< A" whose limit belongs to S:}.

Suppose f: L = M,. (Zix1;), and let f(n)= 1.((¥no Jno), (Putsjurds ")
Vo1 €1, . For any n € “(A7) let F(n)={j: for some n <w, and I, j = j,.}.
Clearly F(n) is a subset of 2* —{i} of power =N, (or <« in (3)), hence
AZ Ujcrm A, so there is « < A such that @ € A; — U, erw) A;. Now for each
a<i W,={n€“(A"):a& A; for jEF(n)} is a closed set, and by the
previous sentence U,ca, W, =“(A"). Hence by 1.2 of Rubin and Shelah [9]
lemma 2.14, there are @ and T C “7(1™) such that:

@¢ )eT,

(b) » € T implies that for A ordinals y <A™, n(y)&€ T,

(c)for every n € T, | = ju1ms : @ does not belong to A,

Now we can work with T, and get a contradiction as in 2.1 by restricting f to
I="A)NT)U{ne“(A")NL: for every n<w, nn € T}.



Vol. 45, 1983 UNCOUNTABLE BOOLEAN ALGEBRAS 117

2.8. THEOREM. Suppose u =\ =A™, then

(1) K2, has the full strong (2", A", u, No)-ts,.-bigness property.

(2) If in addition A=" = A, « regular, then K3, has the full strong 2", A", u, x)-
bigness property for f which are strongly finitary on P,

Proor. (1) Define S°, S, A: as in the proof of 2.7 and
Ii = {((aoa BO), ot .7(am Bn), an+1> n< w, O < Bl < /\+}

U {<<a0> BO)?(al’Bl>’ o .7<an, Bn>a Tt > n< w, & < Bl < [ 7081 < A‘
for | <w and U a, belong to S}

Suppose f:I = M? . (2= 1), let x be big enough, N* be an expansion of
(H(x), €) by Skolem functions, and individual constants for «, u, A, i, (I :j <
220, (S ] <2), (8% 1@ <A).

For n € “*(2"), let N, be the Skolem hull of {n(l), N, : I <I(n)} (in N*¥),
hence if I(n)=w, N, =U,..N,u and N, € Nyusr.

For n€“(A), let F(n)=N, N2* —{i}, so F(x) is a countable subset of
2" —{i}, hence A, U,crm A;; let W, ={n € “(A"): a & A, for j € F(n)}, and
there are a, T as in the proof of 2.7:

(@) YET, a €A,

(b) n € T implies that for A ordinals, y <A™, n"(y)E T,

()for n €T, if jEN,, j<2% j#i, then a does not belong to A,

Now we choose m&“(A") such that n(n)>sup(N,,. NA*) and
U.<.m(n)ES,; this is possible by (b) and as S, is stationary, [§ €S, >
cf 8 =No]. Now as in the proof of 2.2, we define by induction on n, ., B.;
n(n)< a. < B € Nyynry and ((ao, Bo), * * *, (@, Bn), - - + ) Will exemplify what we
need.

2.9. THEOREM. (1} Suppose p = A, {A, i < x} is a family of subsets of A, no
one included in the union of N, others, then K. has the full strong
(X, A"+ A7, 1, Ro)-..-bigness property.

(2) The parallels of 2.7(2), 2.8 (in the sense 2.9(1) is parallel to 2.7(1)) hold.

Proor. The same proof, using the A;’s above.

§3. Applications to Boolean algebras

3.1. DeematioN. (1) For I € K7 let B.(J) be the Boolean algebra generated
freely by x, (n €1) except that n <v & x, > x..



118 S. SHELAH Isr. J. Math.

(2) For I € Ky, let Bn{I) be the Boolean algebra generated freely by x,
(n €D exceptthatforn €L I(n)=w, n <w, n = {ao, Bo)," " *» (@ Bn) = * ), the
following holds:

Xy < Xntn*a )N Xqy N x,,r,"‘(ﬁn) = 0

(3) For I € K;; such that every 7 € I, which has an immediate successor, has
infinitely many immediate successors, let B, (I) be the Boolean algebra gener-
ated freely by x, (n €) except that X, N x,~g =0 for a # B and x, < x, for
v<n.

3.2. NoraTioN. We let x stand for tr or ptr or trr.

3.3. DerFniTION.  For Boolean algebras B, B, and a* € B, we define the
“B-surgery of B at a*” or “surgery of B, at a* by B”, B., as a Boolean algebra
extending B, B, =[B.[(—a*)] X [(B;] a*)* B] where X is a direct product *
free product. Alternatively B, is generated as follows: first make B disjoint to B,
(by taking an isomorphic copy) and then B: is generated freely by B, U B except
the relations

OB, =05,

aNb=c¢ (fora,b,c EB,,aNb=cinB,) similarlyfor U,
lg,—=b=c (forb,c €EB;,15—-b =cinB)),
anNb=c (fora,b,cEB,aNb=c) similarlyfor U,
a<a* (le.aNa*=a) (fora € B).

3.4. ConsTRUCTION. Let x € {tr,ptr}, A a cardinal. The idea is to construct a
Boolean algebra by defining an increasing continuous sequence B; (i <a), Bo
trivial and we get Bi., by a surgery of B; at a’ € B, by BY¥=B.(L.), | L|= A,
I, € K%; where I is fully ¢, -unembeddable into 2, I, We denote B = U,_. B;
by Sur(l,a*:i <a). Usually we want U, B, — {0} ={a*:i<a}.

DerFINITION. (1) A B.A. satisfies the A-chain condition if there are no
A-elements which form an antichain (i.e. they are # 0, the intersection of any
two is zero).

(2) A B.A. satisfies the strong A-chain condition if among any A-elements
there are A which are pairwise not disjoint.

3.5. CLAM. Let x E{tr,ptr}, I € K¥, A uncountable regular.
(i) If x =tr, then B.(I) satisfies the strong A-chain condition.
(i) If x = ptr, then B,(I) satisfies the strong (2")"-chain condition.
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Proor. (i) First we take x = tr and check the strong A -chain condition. Note
(1) X N Nxy, N(—x,)N - N(=x,)=0 iff 3i,j (v =)

Now for FE[I]™ let xr =l erx, and Xp =Il,c-(— x,). To check the strong
A-chain condition it suffices to take T'C[I]™ x[I]™ with |T|=21 and
Y(F,G)ET (xr NXs#0) and find ' € [T']" s.t. V(F, G), (F,G)ET", xr N %z N
x¢ 0 %o #0. We may assume that (F:(F,G)ET) and (G:(F,G)€ET) are
A-systems, say with kernels K., K, resp. We may assume (F, G)# (F',G') =
F#AF and G#G'. We may assume 3dAm, n€w VY(F G)ET
(|F|=malG|=n). Say nr:m—F, n5:n— G (are one-to-one, onto). We
may assume Vj < n, V(F, G), (F', G") €T (length n(j) = length ns (j)). Clearly
then, using the A-system assumption,

(Q)V(F, G)ET Vi < m Vj < n there is at most one (F', G) €' s.t. n(j) = ne(i).
Now
@) Vi<mVj<nVI'E[[] A E (] Y(F,G), (F,G)ET" (n63G) £ n(i)).
For, let <' be a well-order of I”,

Jo={(F. G),(F,GW €[] : (F, G) <" (F', G") and n6(j) = m(i)}.
J, similarly with '> in place of <'. Then [I"}=J,UJ, U ('] = (JoU J))), and
A = (w, w, A) yields (3), using (2).

Applying (3) m - n times gives the desired result, by (1).
(ii) The case x = ptr is similar, but more complicated. First note

(4) xmn"'nxnmﬂn(_xm)n'”n(—xvnq)zo

iff one of the following conditions holds:

(@)3i,j <m (I(m)= o and Sucr(n; n)),

(b)Ji<m, 3j<n (I(n)= o and Suc, (v, n)),

©3ij<m (m)=Ilm)=w and Ip <o (nlp and 3a, B, v [m(p)=
w(a, B), and 7;(p) = (B, Y)])-
Again we take I'C [I]™ X[I]™ with |T'| = (2%)" and V(F, G) €T (x¢ N %5 #0).
We get A-systems as before. We may assume (F, G)# (F',G') > F# F' (but
possibly G = G’ always). We get m, n, s, 116 as before, and again make the
length assumption. Now

V(F, G)ET' Vi < m Vj < n there is at most one

©) (F', G"YET s.t. Suc. (nedj), ne(i)).
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Hence as before we may assume
©) Vi<mVj<nV(F G),(F,G)ETI(—Suc. (n6(), n=(i))).
Similarly we may assume

%) Vi <mVj<nV(F,G),(F,G')E (= Suck (1), 1r(i))).

Now if o, 7 € I with (o) = (1) = w, and if p < », we define oR,7iffc[p=T[p
and Ja, B,y (o (p) =(a, B) and 7(p) = (B, v)). Now

Vi,j <m Y[ €[T)* Ir €[I")* V(F, G),(F’,G')ET

) (Vp < )1 (e ()Rpme(j))

where p = (2%)". In fact, we can use the partition relation p — ((3)., 1 )°, noting
that for each p < w there do not exist (F, G), (F',G"), (F", G"Y&T such that
ne(DRMe(J ), ne(DRe(F), e (i )R,meAj ); otherwise we would get x = 0. From
(8) we see that we can assume

9 Vi,j <mV(F,G),(F,G)ETI'Vp <w (I )Rmrj).
Hence by (4) we are finished again.

3.6. CLam. If B,, B satisfies the strong A -chain condition, a* € B, B, is the
result of a B-surgery of B, at a”, then B, satisfies the strong A -chain condition. If
one of B, B satisfies the strong A -chain condition, and the other only the A -chain
condition then B, satisfies the A-chain condition.

3.7. Coam. If B, is the result of a B-surgery of B, ata™ then B, < B, (i.e. B, a
subalgebra of B, and every maximal antichain of B, is a maximal antichain of
B,. This is also called “B, a regular extension of B,”).

Proor. Trivial.

3.8. CLaiM. The relation < between Boolean algebra is a partial order and if
B: (i < a) is increasing continuous then Bo< .. B, and if each satisfies the
(strong) x-chain condition, then so does \U.. B, for regular y.

ProoF. See Solovay and Tenenbaum [19] for the x-chain condition, and
Kunen and Tall [5, p. 179] the strong x-chain condition.

3.9. Ceamm. (1) In the construction 3.4, | Bi||=A for i>0, i <A™,
(2) In 3.4, if each B,.(I) satisfies the strong x-chain condition, x regular, the
B =Sur(l,a*:i < a) satisfies the x-chain condition.
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ProOF. (1) Trivial.
(2) By 3.5, 3.6, 3.7, 3.8.

3.10. LemMa. (1) The construction 3.4, B., is representable in M % x(Zi<o I).

(2) Moreover B, [ (1 —a?) is representable in M} u (Zj<ajxiI;)-

(3) If B, satisfies the A-chain condition, then B, (the completion of B..) can be
represented in M} \( ;<. I;). This representation can extend the one from 3.10(1).

(4) Similarly for 3.10(2).

Proof. (1) Define f(0)=0, f(1)=1. For b€ B, and b#0,1, say b first
appears in Bi.,. Say
b= (b’, 2 de]‘)
j<m
with b'€B;[(—a?), ¢; €B:la% d; € B.(l). Say (by induction hypothesis)
fY=r1, f(¢;)=0; f(a¥) =0, di = p;(xs;," - *, X,;). Then we set

f(b)y=F.(o,7,01, ", 0m 01, -, 07), kcodes{m,n,po, ", Pm-1)

where F, is a suitable function symbol. Thus, f(b) codes all the relevant infor-
mation about b.

(2) We may assume that a} #0,1. We go exactly as in (1), using (—a%) in
place of 1, and working always with B, [ (— a¥). Note that no terms involving I
appear then.

(3) For each a € B, we can fix k < A and a sequence (b, : y < k) of elements
of B, such that a =2, b,; then let f, = F(o, : ¥y < k), where f(b,) = o, for all
vy <K

(4) Similarly.

3.11. LemMA. (1) Suppose I is strongly (No, N, . )-unembeddable into J, B a
Boolean algebra representable in M, (J). Then B.(I) is not embeddable into B.

(2) Suppose I is strongly (u, K, {.)-unembeddable into J and B a B.A.
represented in M}, .(J). Then B.(I) is not embeddable into B.

PrOOF. (1) Let G: B — Mj «(J) be a representation of B into M «(J),
and h be an embedding of B.(I) into B. For n €1 define f(n)= g(h(x,)).
As [ is strongly (Mo, No, §.)-unembeddable into J, there are v, v, 73, n
such that »,=q[(n+1), »iln=wln, v(n)<w(n), [(1)=1(r)=n+1 and
(F), f()) = {f(v2), f(n)) mod M, «,(J). Hence (because g is a representation)
h(x,)<h(x,) < h(x,)<h(x,,) (in B). But h is an embedding hence x, < x,, &
Xy < X, in B(I) contradicting the definition of B.(I).

(2) Similar.
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3.12. LemMA.  Suppose I is strongly (A, k, Y. )-unembeddable into J by f such
that f(n) is strongly finitary for n €1, I(n)= w. If B is a ‘Boolean algebra
representable in MY «,(J) by g, B C B\, B dense in B,, g, extends g and is a
representation of B, in M (J), then B,.(I) is not embeddable into B,.

PROOE. Suppose h is an embedding of B,.(I) into B,. For n € I define: if
(M <o, f(n)=g(h(x,);if {n)= o, choose a, € B, 0 < a, < h(x,) (possible
as B is dense in B;) and let f(n)=g(a,). As I is strongly (u, K, Yp)-
unembeddable into J by f strong finitary on {n € I : [(n) = w} there are vy, v, 7,
n such that v, =n[n(a), .=nn"(B), n(n)={(a,B), « <B and

@), f(m)) = (f(v2), f(n)) mod M (J]).

Hence, as g, is a representation
(*) a, <h(,) S a, <h(x,), a, Nh(x,)=0¢ a, Nh(x,,)=0.
But in B, x,, = x,, x,,N x, =0. Hence, as h is an embedding,

h(x,) = h(x,), h{x.,) N h(x,)=0.

But 0 < a, <h(x,) so h(x,))> a., h(x.,)N a, =0, contradiction to (*) above.
We have proved that B,.(I) is not embeddable into B.

3.13. ConcLusioN. Suppose Ky has the full strong (A, A, No, No)-.-bigness
property. Then:

(1) There is a rigid Boolean algebra B satisfying the N,-chain condition which
has power A.

(2) Moreover, if a, b € B are #0, a —b#0, then B[ a cannot be embedded
into Bl b (hence B has no one-to-one endomorphism # id).

(3) Moreover we can find such B; (i <2'),|Bi|=A;andifa EB,bEB, i#]j
or a —b#0 then B; | a cannot be embedded into B; [ b.

(4) Moreover, in (1), B has no one-to-one embedding # id into B, and
similarly for (2), (3).

ProOF. First note that if f is a one-to-one endomorphism # id of any
Boolean algebra B, then there is an element a# 0 with B[a isomorphic to
Bl f(a)and a N f(a)=0. For, choose x with x# f(x). If x N — f(x) # 0 we can
take a =x N —f(x); if —x N f(x)#0 we can take a = —x N f(x). Hence for
(1) and (2) we only need to find B of power A such that if a, b € B are non-zero
and a —b#0, then B|a cannot be embedded in B [b.

Now let {I, : a < A} exemplify the full strong (A, A, No, No)--bigness property.
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Let B =Sur (I,,a*:a < A) be as in the construction 3.4, such that B —{0} =
{a%:a < A}. Then by 3.9(1), | B|= A. By 3.6, 3.8, 3.5, B satisfies the N,-chain
condition. Now let a, b € B be non-zero, with ¢ = a —b# 0. Suppose f is an
embedding of B|a into B[b. Then f(c)Nc =0,and f (B[ c)is an embedding
of Blc into B f(c). But ¢ =a% for some «, hence B.(l,) is embeddable in
Blc, hence in B[f(c), hence in Bl(—c)=B|(—a.). But by 3.10(2),
B [(—a%) is representable in M v, (Zg4ap<ala). This contradicts 3.11(1).

To prove (3), let A; (i <2")be subsets of A,| A; | = A, and A, Z A, for i # j. For
each i <2' let (y(i, £):¢é <A) be an enumeration of A; with each element
repeated A times. Let (a (i, £): £ < A) be one-to-one, a (i, £) < A, for each i <2
Let (L., :a, v <A) exemplify the full strong (A, A, Ro, No)-t.-bigness property.
Then let for i <2*

B = Sur (Luge.yee, @l 1 € <A),

where for each yE€ A, B —{0}={al, £ <A, y(i,&)=v}. Now if i<2'
a, b € B, and a — b#0, then B; [ a cannot be embedded in B; | b; this is proved
as above. Now suppose i#j both <2', a€B, bEB, and 0#a, b, f an
embedding of B;|a into B;[b. Choose y € A; — A;. Choose £ so that af, = a
and y(i, £) = v. Then Bu(L..¢), ) is embeddable in B; | a, hence into B; [ b. But by
3.11(2), B;Ib is representable in torto(Za<r Lagmvgm)-  Since
(a(i, &), v) Z (@(,m), y(j, n)) for all n <A, this contradicts 3.11(1).

3.14. THEOREM. For A uncountable and regular, there is a rigid B.A. B of
power A satisfying the N\-chain condition. Moreover, B has no one-one endomor-
phism #id, and if a, b € B are non-zero with a —b# 0, then B[ a cannot be
embedded in B | b.

Proor. 2.1 and 3.1(3).

3.15. THEOREM. For A singular with 2% <A and A" = A, the conclusion of
3.14 holds.

Proor. 2.6 and 3.13.

3.16. CoNCLUSION. Suppose Kj. has the full strong (A, A, (2")", (") )-pu-
bigness property for f which are strongly finitiry on P,. Then:

(1) There is a Boolean algebra B, | B | = A satisfying the (2*)"-chain condition
with no one-to-one homomorphism from it to its completion (except the
identity.)

(2) Moreover, for every disjoint non-zero a, b, there is no one-to-one
homomorphism from B a to (B|b) provided that a — b#0.
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(3) We can also get 2* such B.A’s such that there is no one-to-one
homomorphism from one to another (and even from B[ a, a € B, a#0) to B,
where B, # B, are in the family.

(4) If the full strong (A, A, 2", 8,)-¢.~bigness property of K. is exemplified
by Ng-stable I's, then we get Boolean algebras satisfying the countable chain
condition and then we can replace (A, A, (2%)", (2")") by (A, A, R, N)).

REMARK. On how to get the 8,-chain condition in more cases, see 6.2, 6.3.

Proor. The proof is similar to 3.13.

We concentrate on (2), and w.lo.g. aNb=0. Let in 3.4 x =ptr, and
{I, : @ < A} exemplify the full strong (A, A, (2), (2™)" )-¢~bigness property for f
which are strongly finitary on P..

Now, in the proof of 3.13, use ptr instead of tr, 3.12(2) instead of 3.11(1), and
3.5(2) instead of 3.5(1).

§4. On the narrowness of Boolean algebras
We prove in this section

4.1. THEOREM. (1) If a Boolean algebra is A -narrow (see below) then it has a
dense subset of power <A.

(2) If B does not have a dense subset of power < A then B has an irredundant
set of A pairwise incomparable elements.

RemaRrk. (1) This completes a theorem of Baumgartner and Komjath which
says the same for regular A; of course we use their ideas.
(2) This answers a question from a preliminary version of [3].

4.2. DeriNimIoN. (1) A Boolean algebra B is A-narrow if it has no A pairwise
incomparable elements, i.e., if a; € B for i <A then for some i# j <A, a; = a;;
we call a set of pairwise incompatible elements a pie.

(2) A set I of elements of a Boolean algebra B is irredundant if for every
bel b&{I—{bhs (ie., b is not in the subalgebra of B which I—{b}
generates).

4.3. OBSERVATION. Suppose that {b,:i <a}C B and for every i <a
5:#0s —@AXN0<xEM:j<i)arx=b],
then for i <j<e, b;Z b. Moreover {b; : j <a} is irredundant.

Proor oF 4.3. Well known (see [3] for references).
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Clearly b;Z b; for i <j<a. Now suppose i <a and b; €(b;:j <a,j# i)s.
Then for some n < w, jo<j; <+ <jui, i €{b;, : I <n}, iZ{j:1 <n}, wlog.
n is minimal, and obviously n >0, j._,>i. Let B, be the subalgebra of B
generated by {b, : I <n —1}. Clearly B, is finite, hence atomic. As b; is in the
subalgebra generated by {B,, b;, .}, for every atom ¢ of B,

biﬂcEBoibiﬂCE{Cnbi C_bjn—l}'

n—-17

As b, B, (by the minimality of n) for some atom ¢ of By, b; N ¢ & B, hence
cNb, c—b#0 and also bNcE{cnNb;, ,c—b, } So b,_ Nc&B, and
belongs to {c¢ N b, ¢ — b;}. Now both {c N b, ¢ — b} are not zero, both are in
(BoU{b:}) C{bs : @ <j,u}) and one of them is = b;_, contradiction to the
choice of b;,_,.

ProOF OF THEOREM 4.1. Suppose A is minimum such that 4.1(2) fails, with B
a counterexample. Then

0] V0# a €B 30# b =a (B b has adense subset of power < A).

For suppose not, and let a be a counterexample. Clearly a is not an atom, so
choose disjoint non-zero b, b.=a. We can define inductively on i <A (for
[ =1,2) ¢ci= b such that

(*) —AxO<x E{ci:j<idpmrx =ci)

(If we cannot define ci this means that (c;:j <i)g, is a dense subset of B | b,
contradicting the choice of a.) Hence by () and 4.3 we have ¢ Z cjfor i <j <A,
and {c|: j < A} is irredundant. Hence {c; U (b,— ¢?):i <j} is an irredundant pie
in B of size A, contradicting the choice of A. Thus (1) holds.

Let X be an infinite maximal set of pairwise disjoint elements of B such that
Vb € X (B[ b has a dense subset of power < A). By (1), X is a maximal set of
pairwise disjoint elements of B. Now X is an irredundant pie, so | X | < A by the
choice of A. Furthermore, since B has no dense subset of power <A, clearly
cf A =| X|. In particular, A is singular. Say A = 2,4, po With each u, < A. Now
since B has no dense subset of power <A, clearly Va <cfA VY &[X]*"
b € X — Y (B ] b has no dense subset of power < u. ). Hence we can construct
by induction (b, : @ <cf A) by choosing b, € X —{bs : B < a} so that B [ b, has
an irredundant pie D, of power u., using the minimality of A. But then
U< D, is an irredundant pie in B of power A, contradiction.

4.4, CramM.  If ¢f A > N8, then by ccc forcing P, we can introduce a B.A. of

power A which has a pie A, of power u for every u < A but has no pie of power A
(2% will be > A).
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ReMARK.  Similar forcing but k-complete does the job above 2%

PrOOF. Let A, <A fora <cfA =k, A =2,..A.. We shall concentrate on the
case A is limit, so we can assume A, > i, A A, regular. Let I ={i: U . A =
i <A}, 50 I, (@ <) is a partition of «.

Let us define the partial order P: an element is a pair (B, w), B a finite B.A.
generated by a finite set {x; : i € w}, w C A, such that:

(1) in B, for each i €w, x; is not in the subalgebra generated by {x,:j €
w,j# i};

(2) if i, j are in the same interval, then x, x; are incomparable.

Fact A. P satisfies the A-ccc.

PROOF. As in [15] §2: w.l.o.g. we have w = w, N w,, (B, w)< (B, w;); and
there is an isomorphism f from B, onto B, such that:

(e){f(x):iEw}={x:jEw}and iEw, > f(x)=x.

B)Let y={a:(Fi€ew) i€L}. If i€EL, a €u;Nu, then f(x)E{x :
j €L}

It is enough to prove they are compatible.

Let B* be the free product of B,, B, over B, w* = w, U w,; then easily

(B*, w*)is the required upper bound. (Proof: As there, check inside every atom
of B.)

Facr B. For every i <A, D, ={(B,w):i €Ew}CP is dense.

Factr C. If GCP is directed, GND:#J for every i<A, B®=
U {B:(B,w)E G}, then B* is a B.A. generated by {x;:i <A} and A, =
{x;:i € I,} is a pie of power A..

Facr D. 1If G CP is generic, then BY € V[G] has no pie of power A.

PrROOF. Suppose (a; 1 << A) is a P-name of such pie (a list with no repetitions).
The case, A is regular, is just like the proof in [15] that the generic B.A. has no
Ni-pie. So let A be singular.

For each a <«, i € L, there is pi = (B, w:) s.t. piFa; = a; for some a, € B..
For some J, C L, |J.|= A, {w::i €J,} is a A-system, m,-eja w; = w* and for
some B (B*,w*)C (B, w;) for every i €J, and w, Nw, =w" for i#jEJ,.
Also we can assume w; N (Ugo,A5)C w®, and for i, j € J., B, B; are isomorphic
over B® with an isomorphism taking a; to g; satisfying («), (8) from Fact A.
Now « is regular > N,, so we find an unbounded S C k, and (B, w), such that the
following holds: « €S = (B,w)C (B, w") and a <8, a €S, B €S implies
the following: w* N w? =w and w* C A and B°, B? are isomorphic over B,
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the isomorphism satisfies («), (8) and this isomorphism can be extended to an
isomorphism of B, B; for any i € J,, j € J; s.t. a; correspond to a;.

Now if we choose a < in S, i €J,, j €J; and try to amalgamate (B;, w:),
(B, w;) such that a, a; are comparable, we succeed. Note that (2) of the
definition of P has no effect, so we can proceed as in [15].

§5. On endo-rigid indecomposable Bonnet-rigid B.A’s

5.1. DerNimioN. (1) For a B.A. B, we call ¢ = ¢(x,c,b) a p.s. (possible
support) over B if b = (b, b\, -, b,) is a partition of 1 (by elements of B),
c =Zby, b #0,---,b,#0, and ¢ is the formula

(x Nbo=c)a A O<x N b <bh).
1=1

The p.s. is degenerate if n = 0. For n = | we write b, only rather than (b, b,).

() For ps. ¢' =¢'(x,c',b"), I =1,2, we write ¢' <y (¢* extends ') if
c'=c’, by—c'=bs—c’,andforevery i, 1=i=n',thereisaj, 1=j=n’ such
that b;=<b| (where b' =(b!:i<n'), of course) (the first two conditions are
equivalent to bo= b and ¢' = boN c?).

(3) For a p.s. ¢ and extensions ¢',- -+, ¢" of it, we say that (', -+, ") is a
disjoint system of extensions of ¢ if by = by N b for i # j, and there do not exist i
and [ =1 such that bj= U}, b).

5.2. DerINITION.  For a 1-type p (always quantifier free in the language of
B.A s for this section) and a B.A. B, we say that B absolutely omits p if for every
p.s. ¥ =¢(x,c,b) and every B < w there is a disjoint system of extensions '
(i <B) of ¢ and formulas 4'(x) from p such that ' F— 4 (x) for all i <.

5.3. Coam. If B absolutely omits p, then B omits p.

PROOF. Suppose c realizes p. Let ¢ = §i(x, ¢, 1); ¢ is a degenerate p.s. Hence
with B =1 we get §° extending ¢ and 3°(x) € p such that ¢'+— 9°x). But
¢ = ¢° is the formula x = ¢, contradiction.

5.4. ReMARK. (1) Definition 5.2 is analogous to Rubin {8)], in which
B =1. In fact this case (8 =1) is the specification of Keisler's omitting type
theorem for L(Q) to atomless Boolean algebras with the added axiom (Vx)
[x >0—Qy(y <x))].

(2) We can do similar work for n-types, but no need arises.

5.5. CLaM. For atomless B, B absolutely omits p iff for every pair ¢ = b, and
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every B < wthere existc', b' (i < B) suchthatb' Nb’ =bofori#j by=b',c =c’,
bo—c=b'—c', and (Vi<B)x Nb'=ckF—13(x)] for some 3'(x)Ep.

Proor. = Givena pair ¢ = boand 8 < w, let ¢y = Y(x, ¢, bo) and by 5.2 let °
(i < B) be a disjoint system of extensions of ¢ and 4'(x) (i <B) a system of
formulas from p such that ' = 9'(x)forall i < 8. Say ¢' = ' (x,c’, b’). Now
we use the following fact from the theory of B.A.’s:

(*) If A is an atomless B.A. and (do, " * -, dm_1) (M € w) a system of non-zero
elements of A, then there exist pairwise disjoint non-zero ey, - -+, e.,,—; such that
e.=d; forall i<m.

We hence get elements e; (i < 8,1 =1 = n;) which are non-zero and pairwise
disjoint, with ej=< bi— U, b} (i <B,1=1=n,). Now choose disjoint non-zero
tiso, tin = eh. Then the system (¢’ U UL, o, b6 U Ul (B0 U 10)) 1 i < B) is as
desired — the checking is easy.

&. Let y = ¢ (x,¢,{bo, - -, b.)) bea p.s. and let B < w. Choose ¢, b* for all
i<B+n so that b’ Nb’ =by for i#j, c=c', bp—c=b'—c' and for all
i<B+nxNb =c'+—1Y for some &' € p. By rearranging the ¢’, b’, we may
assume that if 1 =/=n and b’ N b # 0 for some i < B +n then b’ N b# 0 for
some i = B. After this rearrangement, ({(x, c',(b", b — b',- - -, by, —b*)): i < B)is
as desired (easily checked.)

Now let B be a countable atomless B.A., I a maximal ideal of B, and
D=B-IL Let =P, ={xNb=c:c=be&l}. We partially order P; by
setting(x Nb=c)=(xNb'=c)iffb=b,c=c’and b Nc¢'=c. Asubset G of
Py is an ideal if it is directed upwards and

xNb=c)=xNb'=cYeG=>xNb=c)EG.

Let Gen(Pp)={G : G C Pp, G an ideal}. A natural topology on Gen(Pp) is
defined by the basic open sets {G : (x N b = ¢) € G}, for ¢ = b € I This topol-
ogy is not Hausdorff, but it satisfies the Baire category theorem: a countable
intersection of open dense sets is dense. For almost all G means for all G in a
countable intersection of open dense sets. We use P for P,

Given an ideal G in Pp, B[G] is the B.A. freely extending B by a new
element ¢, subject to tNb=c for (xNb=c)EG.

5.6. MAINLEMMA. Let B, I, D be as above, and also suppose that p is a 1-type
absolutely omitted by B.
(1) For all b €1, for almost all G there is a ¢ such that (x Nb=c)EG.
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(2) Forall bZ I, for almost all G there isa b'= b and ¢' < b' such that b' € I,
¢'#0, and (x Nb'=c")YE G; similarly with ¢'=0.

(3) For almost all G, B is dense in B[G]; B[G] is atomless, and t& B.

(4) For almost all G, B[G] absolutely omits p.

REMARK. We shall frequently use properties which hold for almost all G.
NotaTioN. Let (a,x) stand for a Nx if t=0and a —x if t=1.

PROOF OF 5.6. For c=b& let U, denote the basic open set {G:
(xNb=c)e G}

(1) Given b €1, the set V={G:3c=b(xNb=c)E G} is clearly open.
It is dense, since if ¢'=b'€1I then (xNb' =c)=(xNBUb)=c") and
xNb=bNcN=(xN(PpUb)=c),andsoif (xN(bUb)=c")E G we have
Gel, NV

(2) Given b&Z1, the set V={G:3b'=b3IAc'=c(b’'€I and ¢'#b',0 and
(x Nb'=c')E G)} is clearly open. It is dense, since if ¢y = b, € I, then bZ b,,
and hence, since B is atomless, there isa b'=b N — b, with 0 # b’ € I. Choose
c"€B, 0<c'<b’. Then

xNb' =ch)=xNbUb)=¢c,Uc") and
(x N b()= C())é(x M (b()U b’): Cq)U C’),

and so if (x N(byUb')=cyUc)E G then G € U, ,N V. For ¢’ =0 we use
x N(byUb)=co.

(3) Take G satisfying (1) and (2) (both clauses) for all b €1 and all b& L
Without loss of generality we may take the non-zero elements of B[G] in four
forms: t Nb with b € I, treated by (1); t N b with b& I, treated by (2), first
clause; —tNb=b-—(tNb) with b €I, treated by (1); —tNb with b&I
treated by (2), second clauses: —tNbz=z —tNb'=b"—(tNb)=>b". So we
have proved “B is dense in B[G]”. It follows that B[G] is atomless.

To show that for almost all G, t& B, let d € B; it suffices to show that for
almost all G, t#d Let V={G:3c3Ab(c=beIl) and c#bNd and
(x Nb =c)€E G}. Thus V is open, and clearly t# d for any G € V. To show that
V is dense, let ¢'=b'€ L Choose b" with b'<b”€l Choose c* with
c*=b"—b', c*#(b"-b'YN d. Then

(xNb' =cY=(xNb"=c'Uc*),

and if (xNb"=c'"Uc*)EG then GE V.
(4) First we claim:
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5.6A. Fact. For almost all G, if ¢ = b, in B[G] then there are disjoint d,, eq,
and ¢ €{0,1} and disjoint d, e and £ €{0,1} such that b,=d,U (e, t), ¢ =
d U (e, t), and one of the following holds:

(aYe =¢,€D and { = ¢ d=d,,

(b)e =0, d =d,, and en € D,

(c)en=0, d, e =dy, and e E D,

(d)c, byEB.
For, let G satisfy (1) for all b € I. For any d € B[G] write

d=eoU(e,ﬂt)U(ez—t) (e(),el,ezeB)

with eq, €1, e, pairwise disjoint. If ¢, €E I, thene,—t =e,—(e2Nt)EB;if e, Z 1,
thene, Nt =e,N(—e,Nt)E B. Thus each d € B{G] can be written in the form
eoU (e, t)". So, write by = daU (eo, t)* with doNe;=0 and { €{0,1}, and ¢ =
dU(et)f with dNe=0 and €¢€{0,1}. Since fNtEB and f—t=
f=( Nt)E B, when f € I, we may assume that e €D if e#0, and ¢, € D if
eo#0. If ¢ = e, =0 we are in case {(d). Assume e, =0, e# 0. Then, as (¢ = b)
(e.t) =dyso c =d U (e Ndy, t)° and we are in case (d) if e N d, € I, otherwise
in case (c). Assume e =0, e, # 0. Then by = doU (e N d) U (eo— d, t)’, giving (d)
or (b). Finally, suppose e, e, #0. If { =0 and ¢ =1, then w.l.o.g. ¢ = e, hence
¢ Ne, boNe are disjoint and non-zero, contradicting ¢ = by; similarly if { =1
and £ =0. So, assume ¢ = ¢ so we can get (a). Thus 5.6A holds.

Now to prove 5.6(4) we apply 5.5. Let G be such that (1), (2), (3), 5.6A hold.
Suppose ¢ = b, in B{G] and B < w. Write ¢ and b, as in 5.6A.

Case (a). e=e,€D and (=& Let (xNb*=c*)EP; and wlo.g. e=
—b*; we shall find a bigger element of P such that for every G to which it
belongs there exist ¢, b* (i = B)as desired in 5.5. Note that d U (e, N b*, c*)* =
doU (eoN b*, c*)* € I Applying 5.5 to this pair in B, we get ¢', b; (i = 8) such
that boNbh=doU(eoNb*, c*) for i#j, dU(eoNb*, c*Y =c' =bo, di—d =
bi—c',and Vi= B, x Nby=c'+—13'(x) for some & (x)€E p. Now

boNbi=doU(eoeNb*,c*¥ €l  fori#j,
so there is at most one i = 8 such that by & L. So w.l.o.g. Vi < (boEI). Let
b**=b*U U, pbb andif { =0letc** =c*U U,4(c’' — b*), while if { = 1let

c**=c*U U, sbs—c' —b*). Thus (xNb*=c*)=(xNb**=c**)EP.
Now suppose (x Nb**=c*)€ G. Set

bi=btU(et)’, ci=c ' U(et)  fori<p;
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we claim that the demand in 5.5 holds for these elements in B[G]. For i# j we
have
biNbi=(biNbh)U (e, t) =doU(e Nb*, c*) Ul(e,t)

=d0U(e,t)§ = bO

since t N b* = ¢*. Clearly ¢ = ¢, = b} and b,— ¢ = b} — c}. Finally, suppose that
x Nbi=ci. Then

xNboN —(e,t) =xNbiN —(e,t) by bi’s definition
=ciN —(et) by the hypothesis on x
=c'N —(et) by c}’s definition.

Also (e, t)* = ¢y = x. So to show x N by = ¢’ and hence finish case (a) it suffices to
show boN (e, £)° =c' N(e t)'. Assume ¢ =0. Now if i#j, then

boNeNtN(c’—b*)=boNbiNeNtN(c’'—b*) as biNc' =biNc¢’
=(doU(eNc*)NeNtN(c'—b*)=0
since dg=b* and t Nb* = c*. Hence
boNeNt=byNeNtNb** as tNb**=c**
=boNeNtNc**

=bsNeNtN(c*U(c' —b*))
by the previous computation

=eNtNc' since eNc*=c'
=biNeNt asc'Ne=bjNe ase=—b*
as desired. On the other hand, if { =1 then
(Bh—c'—b*)N(e—)=Sc** N(e—=b**NtN(e—1t)=0,
and now
boN(e—1t)
=boN(e—t)Nb** as by=b**

=boN(e—t)N(b** —c**) as tNb** =c**

=biN(e—t)N —c*N M (=biUc’ Ub*) by the previous computation
j<8
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=biN(e—)N(—tU —-b*)N(B*U N (=bjUc’)) astNb*=c*
j<8

=biUe—-)NbHUBeN(e—1)N N (—biUc’))
j<p

=(biN(e=t)N(b*—c*)UBsN(e—1)N(—bsUc'))

s=(e—t)Nc'=bsN(e—1t) as desired.

Case (b). e=0,d=d,, and e, € D. We find c', b; bo(i = 8) as in Case (a),.
for the pair d =doU (e Nb*,c*)* and define b** as there. This time let
c**=c* if {=0,and ¢**=c*U U,,(bi—b*) if { =1. Then

xNb*=cH=@xNb*™*=c**)EP.

Suppose (x N b** =c**)E G. Set b1 =bU (e, t)°; we claim that ¢’, b} (i < B)
are as desired in 5.5 for B{G]. This is proved much as in Case (a).

Case (¢). e=0, e=d,, and ¢ € D. We assume ¢ =b*, and use d =c =
do— e tofind ¢’, bo € I asin Case (a). Then define b**, ¢ ** exactly as in Case (a).
This time we use by = b;U e and c; = ¢’ U (e, t)*. The details are similar to those
in Case (a).

Case (d). c, ¢o€ B. This is trivial, since B strongly omits p.

5.7. Coamm.  Let B be a countable atomless B.A., f : B — B an endomorphism,
T" a countable set of 1-types which B absolutely omits,  ={x : x =y U z,f(y) =0,
Vo =z(f(v)=v)}. Thus I is an ideal. Assume that B /I is infinite.

Then there is B* D B, t €E B* — B, such that B* is countable atomless and

(1) B* absolutely omits every q €I" (B dense in B¥),

(2) B* absolutely omits p ={x Nf(a)=f(c); a, cEB, tNa=c}
(Thus in no B** D B* which omits p can f be extended to an endomorphism;
otherwise f(t) will realize p.)

ProoF. There is a maximal ideal J of B which contains every a such that a / I
is zero or a finite union of atoms. Let D be the dual filter. Note thatifa € B —J
then there are b, c suchthata =bUc, bNc=0,bEB—-J,andc EB -1 We
can repeat this process on b, noting that ¢; N ¢, =0 = f(ci) N f(cz) =0. This
means that we may assume that f(c)€J.

Applying Lemma 5.6 to each g €T, we see that for almost all G, (1) holds.
Now we show that almost every G satisfies (2). Let G satisty (1), (2), (3), (4) in
5.6 and its proof. Suppose ¢ = by in B[G] and B < w. Write ¢ and b, as in Fact
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5.6A. Suppose (x N b* = ¢*)E P; we want to find x N b** = ¢** as in the proof
of 5.6, suitable for p of (2). Let B" =(d, do, ¢, eo, ¢ *, b*)5. We may assume that
u = b* whenever u € B°NJ and e = — b* or e = 0; similarly for e,. Now using
the remark in the first paragraph we can define by induction on 1 < w elements
Qo,* " "y Uny = —b* such that a, €J — I, f(a))€ J, and a, disjoint from b* U
aoU f(ao)U -+ U anoi U f(an—r). As in [14] (or see Monk [7], lemma 8), we can
assume a, Z f(a,) (replacing a. by some a . = a,). Now by Ramsey’s theorem we
can assume

(1) the truth values of f(a.)N —a.N —b*Na. =0, f(a.)N —a. Nx =0,
f(a.)Nx =0 (for each x € B®) depend only on whether n <m, n=m, or
n>m.

(2) either (A) Vn(f(a.)N —a, =b*) or (B) Vn(f(a.)N —a. N —b* #0).

By (1) and possibly replacing {(a. : n < ®) by (@:.+2: n < w) we get

@) if f(a.)—a,—x#0, x EB’, k <w then f(a,)—a. —x — U,ra.#0.

We consider now several cases, defining b**, ¢**, b, ¢’ (i < 8) in each case
so thatif (x N b** = c**)E€ G, then (bi, ¢') exemplify 5.57s criterion in B[G].

For proving the existence of a suitable &', we let i <, B[G]C B', x €B’,
x Nbo=c' and assume x realizes p and we shall get a contradiction.

For notational simplicity assume ¢ =0. Let

Ho**=>b*U Uicss(ar U f(ar)),

(i) c** = c* U Uicpaz
and in B[G] let:

(iii) b(‘) = by U f(azi) U f(azi+|)7

ivyc' =c

Case A. f(a))—a;, =d (for some j)
So this holds for every j.
Now ¢ N az., =0 hence (as x realizes P) x N f(a».1)=0, so

0=x N f(ax)=x N(f(az) N bo) = (x Nbo)N faz.)
=c'N f(a2i+1) =cn f(a2i+1) ZcN (f(al"“) — o).

SO C ﬂ (f(a2i+1) - a2i+1) = O, and C g d and d ; f(az,-H) _f(ag,".H) (a hypOtheSiS Of
the case A). Hence f(azi+1) — a2, = 0. A contradiction to the choice of the a,’s.

Case B. Forno j, f(a)—a=d
Clearly a, =t MNax hence
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f(ax)=x N f(az)=x N (f(az) N bo)= (x N bs) N f(ax)

=c' ' Nflax)=c N f(asx),

s0 f(ax)= c. But by the hypothesis of the case f(a.)— d#0. Remember that
¢ =d U(e,t), so necessarily e# 0 hence e = —b*, and by the choice of ¢**
(which influence ¢ through t) f(ax)—b*— U .<gasm =0. By (3) this implies
fla;)—ax=b* and as f(ax)=c clearly f(ax)—a, =b*Nc. But as ¢ =
d U (e, t)', e = — b*, this implies f(a.)— ax = b* N ¢ =d, contradiction.

This completes the proof of 5.7.

5.8. CLAIM. Suppose B is a countable atomless B.A. absolutely omitting every
p €T, where |[T'| = N,. Let I be a maximal ideal of B generated by I, U I, where
Iy, I, are non-principal ideals and I, I, ={0}.

Then there is a countable atomless extension B' of B and a t € B' — B such
that:

(1) B' absolutely omits every p €T.

(2) B' absolutely omits p,={xNb=c:b,cEL,bNt=c,orb€EI, c=0}
and p,={xUb=c:b c€Il,b—t=c;orbel,, c =0}

Remark. If B? is an extension of B' omitting p; and p,, then there is no
maximal ideal I' of B and non-principal ideals I, I; such that I, U I; generates
I' INI1={0}, and I{N B =1, for [ =0, 1. In fact, otherwise t or —¢ is in I'
and hence has the form t,U ¢, with & € I} for | =0, 1; but then t, realizes p, or p.

ProoOF OF 5.8. Let G satisfy (1), (2), (3), Fact 5.6A in 5.6 and its proof, and
suppose (x Nb*=c*)E P, Let ¢ = by in B{G], B <w; write ¢ and b, as in
Fact 5.6A. We want to find x N b** = c** € P extending x N b* = ¢* so that
(x Nb** =c**)e G > B[G] satisfies the desired condition (2) for p,, ¢, bo;
similarly for p,. In some cases p, and p, can be treated simultaneously. Let B® be
as in the proof of 5.7; again we may assume that u = b* whenever u € B°N I
and [e#A0>e=—b*], [e0#0> e;=—b*]. For each uecl write u=
g(u)U h(u) with g(u)€ I, and h(u)€ I,. Now choose do, -+, as-1 disjoint
from b* such that ax. €1, all a’s non-zero and pairwise disjoint. This is
possible since I, and I; are non-principal. We consider several cases defining
b** c**, by, ¢' (i <B)sothatif x Nb** = c** € G, then c'b; (i < B) exemplify
5.5’s criterion in B[G]. For proving the existence of ' let (for a specific i < )
B[G]CB', x €B’, x Nbi = c', assume x realizes p, (or p,) and we shall get a
contradiction.
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Case 1. e=e,ED. Let

b**=p*U U a, c*r=c*U U Azi+y

i<28 i<g

bo=byU ax U azi+i, ¢’ =cUaan.

Suppose x N b= ¢'; we claim that x N h(b**) # 0, contradiction for both p, and
pz. (Note that dy=b*, s0 ax+1Ndo=0 and hence b,—c =by—c'.) In fact,
Arn=c' =X, 50 ann =x Nh(b**), as desired. When we refer to Case 1, we
shall mean with { =1.

Case 2. e,=0,d,e=do,e €D, ¢£=0.Letb** c**beasin Case 1, bj= b,
¢’ =c.Since —e = b*, we have a, = e for all n. Again suppose x Nby=c'; we
show x Nh(b**)# 0. We have t N h(b**)=h(c**) so a, = h(c**)=1, hence
aZ=eNt=x;soa,=x,and &, =b**Na, €I hence a; = h(b**),s0 0< o, =
x N h(b*™*) as desired.

Case 3. e=0,d, e=do, ecD, £€=1. Let b** be as in Case 1, ¢c** =
c*U U.gaz bo=bo, ¢’ =c.

Suppose x Nby=c". Now tNh(b**)=h(c**)=h(c*),s0o a.=eN —t=x
and x Nh(b**)#0.

Case 4. e=¢=0and c€1I, bp€B -1 Thenc, —by=b*, s0 a, =by—c¢
for all n. Let b**, ¢**, bo, ¢' be asin Case 3. If x Nbi=c' and x N g(b**) =
g(c**), then a, = g(c**)=x and a, = by, 50 ax = x N by = c¢', contradiction;
this takes care of p,. For p,, let b**, c¢**, bi, ¢’ be as in Case 2. Note that
g(b**)N —1=g(b**)=g(c**). If g(b**)Nx = g(b**)— g(c**) and x N b} =
¢’ then ax = g(b**)—g(c**)=x and a» = by, s0 a = x N b= c’, contradic-
tion.

Case 5. e=ey=0and by,,c EB —1 Then —c¢ = b*,s0 a. = ¢ for all n. For
Py, let b**, ¢** by, ¢' beasin Case 2. If x Nby=c’ and x N g(b**) = g(c**),
then a. N g(c**)=0 but a, = x N g(b**), contradiction. For p,, let b**, ¢**,
bo, ¢’ be asin Case 3;if x N bo=c' and x N g(b**)= g(b**)— g(c**) (like Case
4), then a =c s0 ax =x N g(b**) and a = g(c**), contradiction.

Case 6. e =¢,=0 and b,, ¢ € I. Trivial.

Case 7. e=0, d=do, eo€D, {=0. Let b**, b), ¢’ be as in Case 1,
c**=c* Then for any i<2B, tNa, =tNaNb*=qa,Nc**=0. Hence
bo—c = bi—c' and we can finish as in Case 1.
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Case 8. e=0, d=d,, ee€D, {=1. Let b**, by, ¢’ be as in Case 1,
c**=c¢*UU,.pa. Then a; =t for all i <28, so bo—c =bj—c' and we can

finish as in Case 1.

59. CLamm. Let B, I" be as in 5.8. Suppose d*E€B, c#d*#1, B, is a
subalgebra of B —d*, and h is a homomorphism from B, onto B.= B |d*.

Then there exist a countable atomless extension B' of B and t € B' — B with
t=d* such that:

(1) B' absolutely omits every p €T,

(2) B' absolutely omits p = {{(x): ¢ is quantifier-free with parameters from B,
and {h(a): a € By, BE—1y[al} has at most one member} U{x Na#0:a € B,
O<h(a)=t}U{xNa#a:a€B, 0<h(a)=d*—t}.

ReEMARK. Thus there do not exist B”, BY, h” with B” extending B',
(B,B,,h,d*)<(B",B},h",d*), and B" omitting p. Otherwise, there is an
x € BY such that h(x) =1, hence x realizes p. This is clear for the second and
third parts of p. For the first part, suppose ¢ is as indicated, but B"=—1 ¢/[x].
Thus B"E3Jv(—¢g(v)av €BY), so BEIv(—¢(v)av €B,). Say y € B,
BE—y(y). Then BEVYo(v € Bia m1(v)— h(v) = h(y)), so this holds in B”".
Hence t = h"(x)= h(y) € B, contradiction to t € B' — B.

PrOOFOF 5.9. Let I be a maximal ideal in B such that —d* € I. We want to
show that for almost all G, if (x N —d* =0)€ G, then the conclusion of 5.9
holds for B' = B{G]. To this end, let G satisfy the conditions (1)-(3), of 5.6 and
5.6A.Let (x N b* = c*)E P be arbitrary; let by, ¢ be asin 5.6A. Let 8 < w. Now
we want to find an extension x N b** =c¢** € P of it such that for any G as
above, if (x Nb** =c¢**)€ G and (x N —d* =0)€ G then the conclusion of
5.6 holds. We may assume that (x N —d*=0)=(xNb*=c*). Thus —d* = b*
and —d*Nc*=0.

(1) We may assume that b,, c EB and d*=b,—¢.

For, note that (x Nd* =0)E P. Hence if ¢ Nd* #0 we can take b** = b*,
c**=c* bi=by=bo, ¢’ =c. So, assume cNd*=0. If d*N —b,#0, let
y; =d*N — by for i <B be pairwise disjoint. Then let b** =b*, ¢** =c¢*,
bo=boUy,c =cUy.Ifx Nby=c',theny, =x Nd*, as desired. Thus we may
assume that d* = by. Let bo=doU (e Nt),, as —d* €I wlo.g. eN —d*=0,
i.e. e =d*, hence (as d* < bo) bo=boU d* =boU ((e Nt)* Ud*)=b,Ud*EB.
So, bo€EB. If c=dU(eNt), then ¢Nd*#0 unless eNt=0. If ¢=
dU(eN—t),noteeN—t=eN—d*=tN —d* (since c= ~d*)so ¢c EB.
Thus (1) holds.
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Now let ¥(x, c, by) be the formula x N by = c. Let
A ={a €B,:BE{(a,c by}

If h has a constant value for all a € A, then —1 i (x, ¢, by) € p; we can then take
b**=b*, c**=c* bi=b, ¢ =c. So assume there are a,, a.S A with
h(a:)# h(a:). W.lo.g. h(a)Z h(a.). Let a =a,~a; thus h(a)#0, a €B,,
and a Nb,=0. Now since B[d* is atomless, there are pairwise disjoint
non-zero y; = h(a) (I < w). W.lo.g. one of the following conditions holds:

O Vily =c*),

i Vi(yy =b* —c*),

@) vi(yyNb*=0).
Next, we can find z, € B, such that h(z;) =y, and the z; (I <w) are pairwise
disjoint. Now we split into cases according to which of (i), (ii), (i) holds.

Case (i). Let b**=b* c¢**=c* c¢'=c by=bUz, &' =(xNz#0)
(i <B). Then & Ep by the second part of p. Since 0<h(z)=c*=t, and
xNby=c'F1 8 since z. = by—c".

Case (ii). Let b**=pb* c¢**=c* c¢'=cUz, bi=bUz & =
(x Nz#z) (i<B). Then ¢' €p by the third part of p, since 0<h(z;)=
b* —c*; thus h(z;)= d* (by definition of h), and h(z,)= —tsince t N b* = ¢*,
Further x Nbo=c'Fx Nz = z.

Case (iii). Let b**=b*U U, ay, c**=c* ¢'=cUz, bi=bUz, &' =
(xNz#z) (A <PB). Thus t N h(z)=0since tNb**=c*, so &' € p, and we
finish as in Case (ii).

So we have proved 5.9.

Now we recall some definitions. B is endo-rigid if for every endomorphism f
of Bif I={x:x=yUz f(y)=0,Vo=z(f(v)=v)}, then B/I is finite. B is
indecomposable if there do not exist non-principal ideals I,, I, of B with
I, I, = {0} such that I,U I, generates a maximal ideal. B is Bonnet-rigid if
whenever f and g are homomorphisms from B to another B.A. B, with f
one-to-one and g onto, then f = g. Every endo-rigid B.A. and every Bonnet-
rigid are mono-rigid, i.e., have no non-trivial one-to-one endomorphisms.

5.10. CramM.  Suppose B is mono-rigid but not Bonnet-rigid. Then there exist
d*, B\, hsuch thatd* € B,0# d* # 1, B, is a subalgebraof B| —d*, and h is a
homomorphism of B, onto B | d*.
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PROOF. Let f and g be homomorphisms of B to a B.A. B* with f one-to-one,
g onto, but f#g If g is one-one, then g 'of is the identity, so f =g,
contradiction. Thus g is not one-one. Say d* #0, g(d*)=0. Thus 0 £ d* #1.
For any b€B we have g(bN —d*)=g(b), so k=gl(B]—-d*) is a
homomorphism from B|—d* onto B*. Let B, =k 'f[B]: thus B, is a sub-
algebra of B|—d*. For any b €B, let h(b)=f 'k(b)Nd*. Then h is a
homomorphism of B, onto B[d*.

5.11. THEOREM. (Oy,). There is an endo-rigid, Bonnet-rigid, indecomposable
B.A. of power N,.

ProOF. We construct by induction on i a B.A. B; and a set I'; such that

(a) B; is countable and atomless, and (B; :i <N,) is strictly increasing and
continuous.

(b) I'; is a countable set of quantifier-free 1-types over B;, and (I'; : i <N} is
increasing and continuous.

{c) B: absolutely omits each p &1l
First, let {A,:a <w;) be a Ou-sequence. Write w, =AU A; UA,, with A;
pairwise disjoint and of power w,. Let g map w, X w, one-one onto A; for all
i <3.

Now we let B, be countable atomless, I, =0. For 8§ < w, limit, let Bs =
U.<s B, I's = U, T.. Now we define B, and ['i.,. In all cases, including B,, we
can take the universe of B; to be € w;.

Case 1. 0# A, CAo, B;=i (i.e. B’s universe is i) go' [A:]=f is an en-
domorphism of B;, and the ideal I of 5.7 is such that B/ I is infinite. We apply 5.7
to get BH.] and Fi+1 = I‘,‘ U{p}

Case 2. 0#A, CA, Bi=i and Li={a <i:g(a,0)€ A} and L={a <
i:gi(a,1)€ A} satisfy the conditions of 5.8. We apply 5.8 to get B;.,, and
Ia=T; U{Pl,pz}- :

Case 3. 0# AiCA,, B, =i, and for some d* € B, h = g;'[A,] satisfies the
conditions of 5.9. We apply 5.9 to get Bi.,, and ., =T U {p}.

Case 4. Otherwise, we use 5.6 to get By, and [’y =T

Set B = U,_,, B. Itis routine to check the desired conditions. For illustration,
we show that B is Bonnet-rigid. Suppose not, while it is known that B is
endo-rigid and hence mono-rigid. Then we get d*, B' and h as in 5.10. Let

Cz{l <w1:i = B;,h[BlﬂB,-]=Bi [d*,d* EBi,gz[i Xl]: i, and
(B,B'NB,h|B'NB,d*)<(B,B', h,d*)}.
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Then C is closed unbounded, so choose i € C such that g,[f]Ni = A. Then
g2'[Ai]= h | B' N B, satisfies the conditions of 5.9, and 0 # A; C A,. Hence Bi.,
and [';., are obtained as in 5.9. This contradicts the remark following 5.9.

5.12. THEOREM. It is consistent with ZFC + 2" > R, that there is an endo-rigid
Bonnet-rigid indecomposable B.A. of power N,.

Proor. Let P ={(B,T'): B countable atomless B.A. whose set of elements is
some 8 < w;, [' a countable set of 1-types over B which B absolutely omit}
order: the natural one

Q = the product of 2 Sacks real with countable support.

(We start with V = L.) Force with P X Q, the generic set of P give naturally a
B.A. of power Ni; it is as required.

The point is that for Q, player II has a winning strategy in the following game
Gm(q) (q € Q arbitrary).

In the nth move, player I chose a Q-name e, of an ordinal and player 11
cho0ses Gu+1, Gn < gn+1, and a finite set A,, | A, | < n such that g.. ko, € A..

In the end of the play, player II wins if {g. : m < w} has an upper bound.

§6. Additions on B.A.

6.1. DiscussioN. Ki(n) is defined like Kj., but with n-tuples instead of
pairs:

djtr(n)«xl, )’1>, <X2, }’2>7 Y (xm Yn ))
= ‘/:\1 yi = yiAPe(yi)A \! [ /‘\ yila =xanry(a)=(x(a),"- -,x,.(a))] .

K i1s defined like K.y, but in level n we get n tuples

dflr(m)«xl’ )’1, o ,>) = /l\ yl

n

=y P V (A yiln =5l ray(n) = (), -, ()

All the theorems from §2 on ptr work for tr(n), tr ().

We define B,e)(I) for ¢ = w, I € Ki., as the Boolean algebra generated
freely by x, (n €I) except that if n €1, I(n)= o, n(l)={as, ' -, ax-1), then
Xo = Xiqii)ap, Xn 1 Mot Xty am = 0.

Also, the theorems from §3 on ptr hold for tr(n), tr (w). But in addition
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6.2. CLaM. If a =3, I € K(,.), then B = B (1) satisfies the strong count-
able chain condition.

ProoF. Let a.# 0 (a < w,) be N, pairwise disjoint elements, let a. = 7. (X3,),
7. a Boolean term, 7, a finite sequence from I, w.lo.g. 7. =7 and 7, =
(Mags* * *» M .,» Without repetition, and

a.= N Xp,, N N aq- X, )-
1<k () k@)=t<k
So there is n(a)<w such that I(n.,) <o 2 () <n(a), and (D) =
(i) = @, 1(1) #1(2) implies i n(a) # Naiy [ n(a).

W.lo.g. if m <n(a), l(MNui) = ©, Nei(Mm)=(yo, 1, ) then (.. [ m)(y;,) €
{M0s M1, * - * } (for we change 7, but not n(a), and then uniformize 7; again).

Now w.l.o.g. n{a) = n* for every a, and {{n..) = l.. and (by the theorem on
A-systems) for every m < k, there is .. = n* such that 7, | a. is constant, but
either (7...(an):a < ;) is an indiscernible sequence of tuples (in (A, <)) or
a,, = n*. We can also assume that i), b, < k, o, B <wi, I =n*and ., [ | = ng, 1
implies Yo [ [ = N[ L.

Now we define a function h from {x, : n € I} to the trivial B.A. B, ={0,1}. We
let h(x,, )=1 for «a =0,1, and | <k(0), we let h(x,, )=0 if « =0,1 and
IZ k(0); if m <k(0), I(Nam) = @, & <2, Nam (i) = (@0, + ) then A(X , 1irp) =
i. Otherwise h{x,)=0. It is easy to see that h can be extended to a
homomorphism h' of By (I) into By (as it respects the relations which B (1)
satisfies) and h'(a.) = h'(a,)=1. Hence aoNa,#0. This holds for any e,
B <w.

6.3. THEOREM. (1) In the theorems of §2 (in particular 2.2, 2.6, 2.8), for
3=a = wwecanreplace K, Ui, by Kiio), Wine) and get the same conclusions.

(2) In the theorems of §3 for 3= a = w we can replace K ., Yy by Kiray, v
and get improved conclusions. Mainly, in conclusion 3.16, we have to assume only
“the full strong (A, A, N1, R1)-Y.)-bigness for f which are strongly finitary on P,,”,
and in 3.16(1) we get the Ni-chain condition and 3.16(1), (2), (3) holds.

Proor. Easy.

6.4. THEOREM. Suppose K. has the full (A, X, 8o, No)-y.-bigness property.
Then:

(1) There is a Boolean algebra B of cardinality A, with no non-trivial
endomorphism onio itself; moreover, it is Bonnet-rigid (see below).

(2) If a, b € B are disjoint, non-zero, then there is no embedding of B { a into
any homomorphic image of B[ b.
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(3) We can find such B; (i <2") (as in (1) and (2)) so that for i#j and
non-zero a € B;, b € B, there is no embedding of B: | a into any homomorphic
image of B;|b.

REMARK. We shall use B.A. built from B,.(I), hence has no long chains. We
can go in the inverse direction using B.A. built from orders, using, e.g., Or (I) is
the linear order with elements {x,, y, : 7 € I} such that:

(1) I(n) < o implies x,, < y,, for a@ < B, Yaray < Xyugy AN Xypn <Xy < Yy < Yain
for n <lI(n).

(2) I(n)= o implies X1, <Xy =y, <y, for n < w.

In such cases we need a parallel to Lemma 6.9, which is true.

6.5. DEFINITION. A Boolean algebra B is called Bonnet-rigid if there is no
Boolean algebra B’ and homomorphisms h : B~ B’ (I =0,1) such that h, is
one-to-one and h; is onto B’, except when ho= h;.

6.6. OBSERVATION. (1) If B is Bonnet-rigid then it has no onto endomor-
phism #id.
(2) A Boolean algebra B is Bonnet-rigid if:

(*) For no disjoint non-zero a, b € B is there an embedding of B [ a into a
homomorphic image of B[ b.

PROOF OF 6.6. (2) Suppose h, : B— B' (I =1,0) contradict Bonnet-rigidity.
Suppose first h; is not one-to-one, so for some a € B, a#0, hi(a)=0.

For any b € B, hi(b —a)= hy(b)— hi(a)= h.i(b). So B' is a homomorphic
image of B|(1—a) and Bfa can be embedded into it, so we finish.

If h, is one-to-one, then h,; is an isomorphism from B onto B’ hence
hi'he: B— B is an embedding. It is not the identity (otherwise ho = k) so for
some a € B, a, hi'h(a) are disjoint non-zero; choose b = hi'ho(a).

6.7. DEFiNITION. For a set I of sequences of ordinals closed under initial
segments, we define B..(I) as the Boolean algebra generated freely by {x, : n €
I}, except that

(1) Xpre N xyey =0 for a # B,

(2) x, = x, when n <y,

(3) if n has finitely many immediate successors, {n"{a;): ! < k,} then x, =
len"(a:b

(4) if n <, and every p, n < p < v has a unique immediate successor, then
Xy = X,



142 S. SHELAH Isr. J. Math.

6.8. CLAIM. (1) The only atoms of B.(I) are x.,, m has no immediate
successor, or m <€ vy, v, > 1, v, comparable.

(2) The set {x,:n €1} is a dense subset of B..(I).

(3) Definition (6.7) is compatible with Definition 3.1(3).

6.9. LeMMA. If B is a homomorphic image of Bo = B..(I) then B is isomorphic
to some B..(J), J representable in My, (I).

ProOF. Solet W be an ideal of B, such that B is isomorphic to B,/ W. Let
L={nel:x,& W}
I is an approximation to J. (Clearly I, is closed under initiai segments by 6.7(2).)
Let
Ao={n €I, :n has <N, immediate successor in I;, n"(a;), | <m and
(x, — Uixonap) € W1,
A;={n €I, :n has <N, immediate successor in I, n"(a;), | <m, and
(% = Ui xynep) € W1,
As={(n,v):m E Ao, m < v, I(v) is limit, x, — x.;, € W when I(n)=i<I(v)
and for no ' <7 does (n’', v) have those properties},
As={(n,v)EA;:vE]L, x, —x, &€ W}
Let
J=1, U {n"a):n €A, a minimal s.t. n"(a) & I}
U {n%a+1):(n,v)E A3, n™a)E L}

Now B..(J) is isomorphic to B, and the lemma is clear.

PrROOF OF 6.4. We construct as in 3.4, using B.(I.) (i.e. x = trr there) but
making the surgeries on atoms only. If B = Sur(i,, a%:a <A), we can assume
w.Lo.g.

(*) if v € I, then for some n, v=n €L, I(n)=w.

Looking at the construction, it is clear that B = B..(I*) where
*={m'n" ' in <o, m €L, for some a, <A,

and for [ <n, I(n)=w and a%,,, is x, from L}.
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Now, in fact, it suffices to prove:

(*+) if a, b are disjoint non-zero, B’ a homomorphic image of B [ b,then B [ a
cannot be embedded into B'.

Suppose (*#) fails and a, b, B’ exemplify this. By Claim 6.8 and (*) there is
n €I* x, =a, l(n) limit, and let a% = x,. Clearly B’ is also a homomorphic
image of B(1 - x,), hence it is representable in M5 «, (Zj<rjxa ;) and B(I.) is
embeddable into B | a, hence into B'. By Lemma 6.9, B'= B, (I") for some I"
representable in My, ( Zj<i;#. [;). We can conclude

(*+%) Bw(L.) is representable in My, (Zj<rjxa I;).
But from this the contradiction is trivial.

6.10. THEOREM. If in the hypothesis of Theorem 6.4 we add “A <y = \"”
then in the conclusion we can replace ““of cardinality A” by “‘of cardinality x .

PrROOF. Let {I":a <A} exemplify the (A, A, No, No)-bigness property. Let
{A, :m €“7L} be a family of A pairwise disjoint subsets of A, each of power A.
For each € “A, we can repeat the proof of 6.4 getting B" = B...(I'%), such that if
veTl% I(v)=wk, then for some a=a, I"={pE““A:v"pEI*}, and
a, € A,iw. Now for any C C“A let Be be the direct sum of {B,:n € C}. If
[C|=x, Bc satisfies 6.4(2) (hence by 6.6 is Bonnet-rigid hence has no onto
endomorphism # id).

6.11 THEOREM. Suppose A > N, is regular, A <y =A™ and B is a B.A. as
constructed in 3.13 hence satisfying 3.13 (1), (2) (hence 3.13 (4)). Then there is a
B.A. B,, B C B, C B*, B, of power x, and B, satisfies 3.13 (2) (hence 3.13 (4) and
B, satisfies the Ni-chain condition as B, C B°).

Proor. Let {a,:n <w} be a maximal set of pairwise disjoint, non-zero,
elements of B, such that I = {x € B: for some n, x < U, a;} is a maximal ideal
of B (such a,’s exist by B’s construction). Clearly for x €I, Blx = B, | x.
Clearly for every n there is a free subset of B [ a. of power A. Hence we can find
in B° elements x; (i < y) such that:

(1) x; Na, €B for every i and n,

(i) for every distinct i(l), -, i(k)<x for every large enough n <o,
{xinNa.:1=1,k} is free (in B, a,).

Let B, be the subalgebra of B* generated by B U {x; : i < y}. Now B is dense
in B°, hence in By, and I is dense in B, so I is a dense ideal of B,. Let
x, y €B,—{0}, x Ny =0 and suppose h is an embedding of B, [ x into B!y,
and we shall get a contradiction. W.lo.g. x €I -{0};so B,[x=Bix.IfyELh
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is an embedding of B | x into B [y, contradiction. So w.l.o.g. x' =x A x#0 >
h(x)% I, hence B|x can be embedded into B,[I, which is free, an easy
contradiction.

6.12. THEOREM. If A is strong limit of cofinality N, then:

(1) There is rigid B.A. of power A satisfying the Ri-chain condition ; moreover,
it is mono-rigid.

(2) There is a Bonnet-rigid B.A. of power A.

PrOOF. Let A, <A be regular, A, = A, (Vx < Auu)x™ < Ani (We can use
much less, but there is no point in it).

(1) Build BY as in 3.13, | Bo| = As1.

Now as A, is regular, we can choose the I, we use for 3.13 (to satisfy as models
the condition):

(*) For any uncountable sequence of finite sequences and countable A, there
is an uncountable subsequence which is indiscernible (in the model) over A for
quantifier free formulas. We can replace ‘“‘uncountable” by ‘“of power A,
whenever A =cf A 2%,

Hence B, satisfies ().

So if B, (n < w) are as in Claim 6.14 (below), B, the free product of B, B.,
then the direct sum of the B is as required (B, is O.K.; as for the I, we can use
(An, A, 27, No)-,-unembeddability). .

(2) The proof for Bonnet-rigid is similar.

6.13. LEMMA. Suppose A, =A%, A, <Anit, A =2, A, Then we can find
Boolean algebras B. (n < w) such that:

@I B. =A%

(b) B, satisfies the N,-chain condition.

(c) There are no n <w, b, cEB,, bN¢c =0, b#0, c#0, and embedding of
B. [ b into the completion of Z..<.B ., where B, is B,, for m# n and B,, | ¢ for
m=n,

(d) Any B’, 2.B,. CB'C(Z..B.), is mono-rigid; moreover, there is no
embedding of B'[ b into B'[c forb€B’, b#£0, cEB’, bNc¢ =0.

Proor. Construct B, as in 3.4 using Buw+3(I), I € Kin+3).

6.14. CLamm. There are B.A. B, (n < w) such that:

(1) B. has power cf (2'%°), and has a dense countable subset, hence satisfies the
strong Ni-chain condition.

(2) If B.. are B.A. satisfying (*) (in the proof of 6.12), then B, cannot be
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embedded into B", B"=3,,.,B,, * B, (* — free product, 3 — direct sum), nor
can B.|a, for a € B., a#0. Moreover, there is no homomorphism from any
subalgebra of B" onto any B, a (a#0, a €B,).

PROOF. We use the internal algebra of some subsets of the reals: essentially
the same thing appears in Bonnet [2], so we do not give a proof.
We now define a variant of Definition 1.2.

6.15. DerFINITION. (1) We say that I € K is ¢(Xo, X;, « - -, X, )-ind, -unembed-
dable in J € K provided that: if f is a function from I to M(J) then for some
sequences &; (i < y)from L (@) = (%) = H{x,)-- - letting & = f(@:),{c: : i < x)
is q.f. indiscernible in I [i.e. if ¢(y,- -, y.) is quantifier free, i, <---<i, <y,
j1<"'<jk<Xs

I'=[¢(C_in'”’C_ik)E(b(éh"”aEik)] and I#w[dﬂ’“"dn]'

Note that letting @ = 7(&:), also (¢ : i < x) is q.f.-indiscernible in J.

If the identity of u, k is not clear we write (u, «, i) instead of .

(2) We add the adjective “strongly” if the embedding is into some M*(J) and
for i < x, and subterms 7, 7, of 7, the truth value of 7,(¢;) <* 7(¢;) depends on
71, T2 and the truth values of i <j, i =, j <i only.

(3) We define “...ind, -bigness...” similarly.

6.16. CLaM. In the theorems of §2 we can add indy, everywhere.

PROOF. Same proof.
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