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CONSTRUCTIONS OF MANY 
COMPLICATED UNCOUNTABLE STRUCTURES 

AND BOOLEAN ALGEBRAS 

BY 
S A H A R O N  SHELAH* 

ABSTRACT 
This article has three aims: (1) To make the results of [12, VIII] on constructing 
models more available for application, by separating the combinatorial parts. 
Thus in applications one will only need the relevant things from the area of 
application. (2) To strengthen the results there. In particular, we were mainly 
interested in [12, VIII] in showing that there are many isomorphism types of 
models of an unsuperstable theory, with results about the number of models not 
elementarily embeddable in each other being a side benefit. He re  we consider 
the latter case in more detail, getting more cases. We also consider some more 
complicated constructions along the same lines (K~',r). (3) To solve various 
problems from the list of van Dowen, Monk and Rubin [3] on Boolean algebras, 
which was presented at a conference on Boolean algebra in Oberwolfach 
January 1979 (most of the solutions are mentioned in the final version). Some of 
them are not related to (1) and (2). This continues [I0, §2] in which the existence 
of a rigid B.A. in every uncountable power was proved. There (and also here) 
we want to demonstrate the usefulness of the methods developed in [12, VIII] 
(and §§ 1,2) for getting many (rigid) non-embeddable models in specific classes. 

§0. Introduction 

In §1 we present the abstract context. Clearly, e.g., K~, I~tr, Kptr ,  ~pt~ are 

variants of the same idea. It is, however, not clear whether it is worthwhile now 

to find a common generalization. This section contains mainly definitions. 

In §2 we do the combinatorial part; the point is that, in order to apply the 

method, no understanding of the proof of these combinatorial facts is required 

(though if you need another pair K, qJ you may well have to understand them in 
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order to do the required changes). This section can therefore be waived by a 
reader interested in applications only. 

At present, some of the constructions from [12] are not represented, in 
particular on Ko, (on which the results are naturally stronger), and also K,~, 
K > N o .  

We prove, e.g. (by 2.1, 2.2, 2.6, 2.7, 2.8), 
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notion: "a Boolean algebra B absolutely omit a type p "  (see [18] for a more 
general discussion). 

In §6, we close some loose ends: We deal with a variant tr(a)  of ptr, and deal 

with a variant of bigness (ind,-big). 

By the proofs in [12, VIII §2] and 0.1 it is clear that 

0.5. CONCLUSION. (1) If K~ has the strong (2 ~, A,/z, l%)-$~-bigness property 

T C_ T~, T unsuperstable, I T~ I --</z then IE(A, T~, T) = 2 ~. 

(2) This holds when A >/z,  except possibly when: % < 3. < :t,÷~, 8 limit, 

cf8 = ~to or 8 is zero, )t singular, and (VK < A)T < 2 a. 

NOTATION. We let m, n, k, 1 be natural numbers, i, j, a,/3, % 8, ¢, ~ be ordinals, 

where 8 is reserved for limit ordinals. Let 3,,/x, r, X be cardinals, usually infinite. 

Let r/, v, p be sequences of ordinals, l(r/) the length of "r/, "0(i) the ordinal in the 

i-th place of "r/, 7/^v the concatenation. 

A bar on a letter means we have a sequence of elements of this kind. If x, is 

defined, ~ = ~[h] = (X.(o), x.(1), • • ", ); g = (XoXl,'" "1 Xn--1). 

Let %e be the set of sequences of length/3 of ordinals < a. Let ~>o~ = U~<~c~, 

f3=>OL ___ Uy<__t3~O¢. 

DEFINITION. For r/ a sequence of ordinals let orco (r/) (the ordinal content of 

r/) be {7/( i ) : i<  I(O)}. Also for 77 a sequence of ordinals and sequences of 

ordinals let 

o r co ( r / )={a :  for some i, "0 ( i )=a  or for some i, l<n ,  
r/(i) = (ao , . - . ,  a,_~), a - al}. 

Similarly orco (~) = U~<,~)orco (r~,). 

BOOLEAN ALGEBRAS. We abbreviate Boolean Algebra by B.A., and use the 

letter B for such an algebra. A Boolean Algebra has an individual constant 0, 

and the operation a U b, a fq b and a -  b. A function f from B1 to B2 is an 

embedding if it is one to one and preserves those operations. So a B.A. B has a 

maximal element 1B, but it is not necessarily preserved by an embedding. The 

infinitary operations are defined similarly, and f is a o--embedding if it commutes 

with I"1 . . . .  U.<~ too. 

For a set A of elements of a B.A., (A)B is the subalgebra generated by 

A U { l s } ,  and B [ b = { a : a _ - < b }  (a < b  means a U b = b ) , s o  ler~--b. 

Let - b  be 1 - b ; a n d l e t  b ~ be b if e = 0 ,  - b  if e = l .  
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§1. The framework 

1.1. CONTEXT. Let  K, /X be infinite cardinals, K regular,  F,.~ a /3-place 

function symbol,  for  a < Ix, /3 < K. L = {F~.~ : a < /z , /3  < K }, so L = L (tz, K). 

Let  K be a class of models which we shall call index models  (i.e., they serve as 

a set of indices). Members  of K shall be deno ted  by I, J perhaps  with indices. For  

I, ~ K, a < a (0), E~ I,  is the model  in K whose set of e lements  is {,.J~ L × {a }, 

the relation R is {(t~, a ) . . .  (t,, a ) :  Is ~ R[t l""  ]}; similarly for functions (so we 

allow partial functions) and individual constants are t rea ted  as one-place 

functions, and we have the relat ion E = {((t, a),(s,a)):s, t E Is}. 
For I E K, M(I) is the free L-a lgebra  genera ted  by I, expanded  by the 

relat ions and functions of I, and P, where  pMt~= I. M*(I) is any expansion of 

M(I) by a well order ing <*  of IM(I) t - I P  I, such that ~- = F~,o (~-,, • • • ) implies 1-~ 

<* ~-. So M*K(I) is not uniquely defined. 

The  support  of ~-(a,,. • . ) E  M(I) is {ao," " ' } C  I. 

If the identi ty of /~, K may not be clear we shall write M~,.,(I), M * , ( I ) .  

Let  d,/~ deno te  sequences  of elements,  usually of I or M(I). A term of 

L( /z ,K)  is deno ted  by r (2 ) ,  2 a sequence of variables of length < K. Let  

? ( 2 ) =  ( r o ( 2 ) , r ~ ( 2 ) , ' " ) .  Hence  d = ?(/~) means a, = r~(/~). Note  that every  

sequence  d from M(I) of length < K has a representa t ion  ~(b), b E ' > I I I .  

We call d finitary if d = ?(b) ,  b E ~ > I I  I: we call it strongly finitary if in 

addit ion r has finitely many subterms.  

1.2. DEFINmON We say that I E K  is qJ(2,)7)-unembeddable in J E K  
provided that: if f is a function from I to M(J ) ,  A C J, I A I < K then for  some 

sequences  d,/~ from I (i.e. of e lements  of I) ,  of length l()~) = I()7), I ~ ~o[a,/~] 

and f (d)= ~(Co,...), f(b)= ~(do,...), c,,d, ~ J and ( C o , ' " ) ,  ( d o , - " )  realize 

the same quantif ier  free type over  A in J. For  such f ( d ) ,  f(/~) we write 

f(d)~-Af(6)modM(J). If the identi ty of /x, K is not clear we write (/z, K,~b) 

instead of 4~. If we write q~(2,)7, ~, ~5,--. ), the meaning is clear; similarly the 

meaning of ~O-embeddable. We omit  ¢ if it is ^{q~(.~)- q~()~) : q~ quantifier  free}. 

1.3. DEFINITION. We say that I ~  K is strongly ¢(2 , )7) -unembeddable  in 

J E K provided that for  any M*(J), if f is a function from I to M*(J ) ,  A _C J, 

[A I< K then for  some sequences d,/~ from I, ~ t0[~,/~], f(d) = ~(co,'"), 
f(/~) = ? ( d o , ' "  ), ( C o , - " ) ,  ( d o , . . ' )  realize the same quantifier  f ree  type over  A 

in J, and for  any subterms ~-~,r2 of ?, and o'(ao,. . .)GM(J),  ao,"" E A, 
~ - ~ ( c o , . ' . ) < * o - ( a 0 , - . . )  iff ~ ' ~ ( d o , ' " ) < * ~ r ( a o , ' " ) ;  similarly for  *> ,  and 

71(co, • " • ) <*  ~'2(co, • • • ) iff ~'~(do, • • • ) <*  7~(do, • - • ). For  such f (d ) ,  f( / ))  we write 

f(~i) ~A f ( /~)mod M*(I). We use the abbreviat ion of 1.2. 
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REMARKS. (1) So strongly embeddable is a weaker notion than embeddable. 

(2) The "over A "  in Definitions 1.2 and 1.3 can be omitted without harming 
the paper. 

1.4. DEFINmON. (1) K has the (X, it,/z, K)-O-bigness property if there are 

L E K (i < X), I I~ ] = A, L = L(/z, K) (see 1.1) and for i #  j, I~ is ~b-unembeddable 

into /j. 

(2) K has the strong (X, £ /z ,  K)-¢-bigness property if there are I~ E K (i < X), 

I L [ = it, L = L(~,  K) (see 1.1) and for i #  j, I~ is strongly ¢-unembeddable into/j. 

(3) We add in the notions above "the full . . . "  if we replace/j by E,~,~.~<~ L. 

(4) We add in the notion " . . .  property for f such that . . . "  if we modify 

accordingly the unembeddability, i.e., restrict ourselves to functions jr 
satisfying . . . .  

(5) We also say that the pair (K, ¢) has such properties. 

(6) We say that K is almost closed under sums for it (and ¢) if forevery L ~ K 
(for a < ao =< it), L of power _-< it, there are J, g, h~ (a < ao) such that: 

(a) J E K ,  I J I = A ,  
(b) h~ :/~ ~ J  and for any Xo, ' " ,  y o , " "  E/~, 

I, ~ ¢[(Xo, ' ' '  ) , (yo, ' ' "  )] implies J ~  ff[(h,(xo), . . .  )], (h,(yo)," ' - )] ,  

(c) g : J---~Y . . . .  I,  such that, defining 

R = {((rh i)' (v, J)) : 71E I" v E Ij and i < j} C- (~<~oI~ ) x (~<~oL ) ' 

the following holds: 

for any Xo," • ", yo," • • E J, if (Xo," • • ), (yo," • • ) realize the same quantifier free 

type in J, then (g(xo)," • ), (g(yo)," "" ) realize the same quantifier free type in 

(X . . . .  L , R ) .  
We say K is essentially closed under sums for it if, in addition, Rangh~, 

Rang g is a union of equivalence classes of ~ mod J, ~ mod (E . . . .  L, R)  resp. 

REMARK. We could have made, e.g., h, :/~ ~ M*(J), or in the definition of 

sum expansion by R, without serious changes in the paper. 

1.5. CLAIM. (1) If K is closed under sums, then the full (strong) (X, A,/x, K)-~b- 

bigness property implies the (strong) (X~, A, tz, K )-¢-bigness property, where X~ = 
rain {2 x, 2 ~ }. 

(2) In (1), the "strong" version instead of " K  closed under sums" it is enough 
to assume that K is essentially closed under sums for it, ¢. 

(3) The classes defined below (K~'r, Kor, K~tr) are almost closed under sums. 
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(4) The relations above (in 1.4) have obvious monotonicity properties in X, I x, K ; 
and for all our K, for h too. For example 

X <-- X' ~ [(X', h,/z, K)-bigness ~ (X, h,/z, K )-bigness ], 
/x =< tz', K <= K' ~ [(X, h,/x', K')-bigness ~ (X, h, ix, r )-bigness ]. 

PROOF. (1) Assume K has the full (X,h,/x, r)-t~-bigness property. 

Case 1. X <= h- For F C x  let 

IF=- E L. 
c t E F  

Let H be a collection of subsets of X such that [ H I = 2  x and F / A E H  

F E A .  Suppose F, A E H ,  f:Jv-->M(Ja). Choose a E F - A .  Thus 

f[I~ :I~ ~ M(E~,,~I¢) and the desired conclusion follows. 

Case 2. h < X. Take H a family of subsets of )t and proceed as in Case 1. 

(2) As K has the full (X, h,/z, K)-$-bigness property there are/~ (a < X) in K, 

each of power h, such that L is t#-unembeddable into X0es I~. By the assumption 

of (2) (K is essentially closed under sums) for every FC_ X, IF[ <-- A let Jr, gr, hr 

(a @ F) satisfy (a), (b), (c) of Definition 1.4(6) for X~cr L. As in the proof of (1) it 

suffices to show: (*) if F, AC_ X, IF[=<A, IA[_-<h, F - A / O ,  f:Jr--->M*(Ja), 
AC_Ja, I A I < K ,  then for some £ / ~ E J v ,  Jv~4'[d,/~] and f ( d ) ~ a  

f(/~) mod M(J~). 
Choose a E F -  A. Let F* E L(/~, K) be a one-place function symbol. We can 

define a model m*'(X,~aL) so that: 

for every x, y E L, (x, y) E R implies M*(E~a I ,)~ F*(x) <* F*(y),  

for every Xo, - • ", yo," • • E / .  and terms % o- M*'(E~a/~ 

Z(Xo,-" " )<* ~r(yo," ") implies M * ' ( E ~ L ) ~  z(F*(xo),".  )<*  ~r(F*(yo),""" ). 

Now define ga : M*(E~E~J~)--~ M*'(E,~a L) by gA(z(x0,-.. )) = "r(F*(xo),'" ). 
Let g* = gag~. 

Consider the sequence of mappings: 

I, ~ .  Jr r , M * ( J ~ )  ~i , M * ' ( , ~ I , ) .  

, F So ga[h~:L-->M*'(E,EaL). As E,EaL is a submodel of E,,,~L, also w.l.o.g. 

M*(E,~aL) is a submodel of M * ( E , ~ L ) ;  but we know /~ is $-unembeddable  

into X,,,~ L. Hence there are x, y E L such that 

(i) L ~ ¢[~, 371, 
(ii) g*fh r(y, ) ~.,a<a)g *fh r(37) mod M*'(E,~a I, ). 

By (i) and (b) from 1.4 (6), 
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(iii) Jrl = O[i ' ,  17'1 where i '  = h~r(i), )7' = hr(y), 

By (ii) and the definition of i ' ,  )7' 

(iv) g * (f(£')) ~g;(a)g *(f(f')) mod M*'(2i ~a L ). 

By (iv), (c) of 1.4 (6), the definition of M*(E,~aL), and of g*, ga, 

(v) f ( i ' )  ~-af07') mod M*(Ja). 
So we have proved (*) (by (iii) and (v)) which suffices. 

(3)-(4) Left to the reader. 

Now we define the K and 6 in which we shall be interested: 

1.6. DEFINITION. (1) K~', is the class of I, such that: 

(a) The universe of I is a subset of "-~)t for some A, ctosed under initial 

segments. 

(b) The relations of I are P~ = {7/~ I : 1(7/) = i}, for all i _-< K, ,~ where 7/ 4 v 

iff ~ / = v r l ( * / )  and < ={(r /^(a) , r /^ ( /3) ) :~ l^(a)EI , , l^ ( /3)EI ,  a < / 3 }  and 

Eq~ = {('q, u) : r/[ i = u [ i, */E I, u E I} and an individual constant ( ) denoting 

the empty sequence. 

(2) We let ~b,,(~,g) = V~+~<K[P~÷I(Xo)AP~+~(y,~)APK(x,)AEq,(x,~,yo)AXo¢ 
yoAXI=ylAXo'~XIAyo<Xo]. 

(3) We let tO,,.h(£ )7) = [ A.  (x. Eq.x.+~AP.(x.)Ay. Eq.y.+~AP.(y.)) 

A(:Ix) A.x Eq.x. A --n (:ly) A . y  Eq.y.] .  

REMARKS. (1) We can replace ~,. by 

xj yiAx~+, yi+,A V A (Pj(xi)APj(yi))A i<=,A 
i + l < K  j ~ i + l  

P, (X,+,)A A (X~X,'~X,+2Ay~'~y~)AX~+~/y,+I] 
a < O N a + l  

without changing much the paper. 

A similar remark holds for ~p,r (see Definition 1.8 below). 

(2) We thought that the existence of the full strong (h, h,~lo, No)-0,,-bigness 

property of K~ extracts the combinatorial content of [12] and the related 

constructions, but a question of Grossberg reveals that it seems that is not the 

case, concerning [20], theorem 1.2. Consideration of this suggests: 

DEFINITIONS. (I) I ~ K~ is *-unembeddable into J E K~, if when X is a 

regular cardinal, < a well ordering of H(X), L J, f, belong to H(X), 
f:l---~ H(X ), and p ~ H(X) and we define, for r / ~  ~>h, N, < (H(x), ~,  < ) by 

induction on l(r/) as the Skolem hull in (H~(x),~,<) of {p}U{rl(l):l< 
/(r/)} U {N.u : l </(rl)},  then for some r / ~ / ,  l(r/) = 02 and for every ~, ~ J of 

length 02 either (::lk < 02)[~, I k f f  N,]  or (::ll < 02)(Vk < 02)[v [ h ~ N,,]. 
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(2) We define (/X, K, *)-unembeddabi l i ty  similarly, only N,  is the smallest 

e lementa ry  submodel  of (H(x), E,  < ) including {i : i < p.} t_J {p} tO 

{r/(/),N,r~ : l  < / ( r l ) }  and closed under  taking sequences of length < K. 

(3) The  (full) (strong) (A, X, P-, r)-*-bigness p roper ty  is defined as in Definit ion 

1.4. Now the proofs in §2 on (K~, 6,~) work also for this notion:  it implies the 

previous one;  and we can make  similar changes to bigness proper t ies  of 

(~ ;',r, %,,)- 

1.7. DEFINITION, Let  Kor be the class of linear orders  $o~(~,~)= 

[x,,< x, =-- y~ < yo]^X,,~ x,^y,,~ y,. 

1.8. DEFINITION. K~,r is the class of I such that: 

(a) The  set of e lements  of I is a subset of {7 : ~ is a sequence of length =< K, 

for  i + l < / ( r l ) ,  ~0( i )=(a , /3 ) ,  a < / 3 ,  and for i + l - = l ( ' 0 ) ,  "0(i) is an 

ordinal}. Also if r / E  L i + 1 < l(r/), r /( i)  = Ca,/3) then ( r / r  i f (a )  E i and 

(TI [ i)^(/3)E I. 
def 

(b) The  relations of I are: "q ~ u = ~ = v r/(T/), P~ = {77 : l(-q) = i}, 

<*  ={(~ ,  v) :  l ( ~ ) =  l (~ , ) - -  i + 1 , ~ ( i ) <  u( i ) , -q  I i = ~, r i}, 

Eq, = {(r/, v) :  r t r i  = u ti} 

and SucL={(rl, v ) : r l r i=vr i ,  i+l=l( 'o) ,z ,( i)=(a,/3) ,rl( i)=a},  
Sue ,  = {(r/, u) : n r i = v r i, i + 1 = l (n ) ,  ,,(i) = (,~,/3), 7t(i) =/3}, 

an individual constant  ( ), and functions 

Res,~(r/) = rl r n^(a)Res ,~(~)  = r~ r n^(/3) if , / ( n )  = (a, /3) ,  

I / Ip t r (X,  )~ )  = Vi+i<~[Pi+,(Xo)aPi+,(yo)AP,,(Xl)^Xl = ylA SUCL (Xo, Xl)^ 

SUCR (To, y~)^X,,<T y,,]. 

1.9. DEFINITION. For  I EK'~r, ~, / ~ E ' ~ ] M , , . ( I ) ] ,  a an ordinal,  ¢ i~  

bmod(M,,,,(1),a) if ti = ~(Co,'"), /~= ~(Co,"" "). ti ~-/~ mod M~,.(I),  and for  

any i, and ~C<l(c~) if c~(~)<avd~(¢)<oz then c~(~)=d~(sc). Similarly for  
K M~..~(I) and for Kp,~. 

1.10. DEFINITION. (1) A model  N is representable  in M(I) if there  is a 

funct ion f : I N I ~ M ( I )  such that if a o , " ' , a , - 1 ,  b o , ' " , b , - ~ E N  and 

( f(ao)" ')  ~- if(bo), • • • ) mod m(I)  then (ao, • • • ), (bo, • " • ) realize the same quan- 

tifier free type in N. 

(2) We can replace everywhere  above M(1) by M*(I). 
(3) We say " N  is strictly representable  in M(I)" if in addit ion ao ~- 

bo rood M(I) implies ao E Range  Or) ¢* b0 E Range  (f). 
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§2. Constructions for proving the bigness property 

We try here  to get theorems in ZFC:  extra set theoret ic  assumptions of course 

simplify the situation (e.g., T h e o r e m  2.1 holds for A singular if {~ < A :/~ is 

regular  and there  is s tat ionary S C {6 < / ~ : c f  6 = x~,} with no initial segment  

stationary} is unbounded  below A). 

2.1. THEOREM. If No< A, A is regular, /x < A, A--<_ A* then K~ has the full 
strong (A, A*,/x, No)-tp,r-bigness property. 

PROOF. In fact this is proved in [12, VIII  2.1], but similar theorems a re  

proved  here  later, e.g. 2.2. 

2.2. THEOREM. If/~ < A --<_ A*, (V0 < A)[0 "o < A], A regular then K~tr has the 
full strong (A, A *, I~,No)-Optr-bigness property. Moreover, it has the full strong 
(A,A*,/x, K)-bigness property for f such that [ P ~ o ( a ) ~  f(a) strongly finitary] 
provided that tx<K < A. 

REMARK. We can replace "s t rongly f initary" by finitary if we are content  with 

" the  full (A, A,/x, K)-bigness . . . "  or we change slightly the definition of M*(I). 
Similar remarks  apply to the o ther  theorems in this section. 

PROOF. It is well known that S = {6 < A : 6 a limit ordinal of cofinality No} is 

s tat ionary.  Hence  by a well known theorem of Solovay there  are s tat ionary 

pairwise disjoint S~ C S (for i < h),  S = I..J ~<~ Si. Let  

I, = { ( ( ~ o , / 3 o ) ,  • • ", ( ~ . - 2 , / 3 . _ 2 ) ,  a . - , )  : 

a~,/3~ ordinals < A *, a~ </3~ < a~+~ for l < n - 1 and n < to} 

U {((ao,/3o), ' '  . , (a , , f l , ) , . . . ) :a ,  < f t ,  < a,+, < A, and [.J,<~a, ~S~} 

and L = L (/~, K). Trivially [L [ = h*, as h"o = h. 

We shall prove  that  L is strongly ~Op,r-unembeddable into 17 = Ej,~i/j, by an f 

such that  [a E P~ ~ f(a) is strongly finitary], assuming/x  <K < A, thus finishing 

the proof .  We concent ra te  on the case h = h*. 

So suppose f is a funct ion from L into M*(L)  where  f01 )  is strongly finitary 

for  rt of length w. 

For  any a E L  let f(a)='c,(~,) and a ( a ) = s u p { y < h  : y  appears  in ~} ;  

clearly a ( a ) <  h. Hence  the set C ={6  < h  : if a ~ L  o r c o ( a )  --<6 then a ( a ) <  

6} is a closed unbounded  subset of h. Also for any rl = ((ao, flo}, • • • (a,-1,/3,_~)), 

ao </30 < a~ < • • • </3,-1 < A, the following equivalence relat ion of h : aEt~fl iff 

('" ",f(n r l^(a,)), f(71 [1^([3,)) "'', [ ( r / ^ ( ~ ) ) ) ~ (  " ' ' ,  f (7 / [ /^ (a t ) ) ,  f ( n  r l^(/3,)), 
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• . . ,  f (~^ ( /3 ) ) )mod(M*(I ; ) , /3 .  ,) has < A equivalence classes. Hence  for  every  

y < h  there  is / 3 ( T / , y ) < h ,  such that for  any /31, y < / 3 1 < h  there  is /32, 

y </32 < /3  (r/, y )  s.t. /3~E~/32. Again the following is a closed unbounded  subset 

of A: 

C ~ = { 3 ~ C :  if c ~ o < / 3 o < a ~ < - - - < / 3 .  ~<6,  n<oJ ,  
rl = ((a,,,/30),""" (a._,, /3._,)),  y < 3 then /3(7, 3') < 3}. 

So we can find 3 E C~ n S, ( r emember  S~ C_ S is stat ionary);  so 3 has cofinality 

Mo, and let 3. < 3.+1 < 3, 3 = U . < ~  3.. Now we define by induction on n, a . , /3 . ,  

such that: 

(*) if 77. = ((So,/30), • • ", (a.-1,/3._1)), then a°Et~./3 ., and 6.,/3._, < a .  < /3 .  < 3. 

This is easily done  - -  we let y. = max{3.,/3._~},/3. =/3(r / . ,  3 , . )+ 1, and a .  is 

chosen by the definit ion of /3(r/., Y.) such that y.  < a .  </3(r / . ,  y . ) ,  /3.E~.a.. 
Let  r / b e  the unique r / ~  L n ~ (3. x A), r / r  n = "O. for  every  n (r/ exists by the 

definition of L) and let f(7/) = "r~((uo, jo) ,"  ",(uk-~,jk 1)), where  j ~  i, j~ < A and 

u~ E ~,. Note  that k is finite because f ( r / )  is finitary. 

Let  V = U~<korco(u~). Because the Ss are pairwise disjoint and 3ES~,  

sup [orco (u~) n 3] cannot  be 3 (even when l(u~) = to). Hence  V n 6 is a bounded  

subset of 3, hence bounded  by some 3.¢o~. 

Now let 

A .  = {71(t?~) : for  some u @ {r/m^(a,.), r/,.^(/3,.) : m < n}, 

f ( v )  = ~-~(e.) and ~'1 is a subterm of ~-.}. 

So A.  increases with n. Let  B = {~'l((jo, u0),- • • ) : ~'1 a subterm of ~-,}. As f ( r / )  is 

strongly finitary, B is finite. R e m e m b e r  <* is a well order ing of M*(F/) ,  so there  

is n(1) such that for  every  b E B:  

(1) b @ U . < + a .  ~ b E A.o> , 

(2) min{a  @ U . < + A .  : b -_<* a} belong to A.~), if there  is such a. 

Le t  n > n(0),  n(1), now (r/ .^(a.) ,  rt) and (7/.]'(/3.), r/) exemplify the require-  

ment  in the definit ion of strong q,p,+-unembeddability. We check two representa-  

tive cases. Say f ( r l .^ (a . ) )  = ~'l(F), f(r/.^(/3.)) = ~'l(d). We get the same term as 

We want  to show that  (~,((vo, j o ) , "  ",(Uk-~,jk-~)))=(6,~) realizes the same 

quantif ier-free type as (d, g) = (d, ((uo, jo)," "',(Uk-~,jk-,))), and that the <*  

condi t ion holds. Suppose q ,~ u.. By the choice of C, orco ( q ) C  3. Hence  for  any 

< / ( c , ) ,  c,(~) = u~(ff)< 3.to~<a.~o)</3.~o~ -</3._~, so c,(ff) = d,(ff) as a.Et~./3.. 
Thus q = d~, so d~ .~ vs. 
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Suppose 7,_(6)<* ~3(e), ~2 a subterm of rl and ~'3 a subterm of r~. Thus  

72(C) ~ A,,+I and ~'3(~)E B. Suppose "T3(e)~* "r2(d). 
Let  a E I .J .<. ,A.  be minimal such that r~(~)<*a, thus a EA.o) .  Now 

~-~(6) <*  a and n(1) < n, so o~.E~#,~ implies that  r~(d) <*  a but  r3(~) =<* ~-:(d), so 

this contradicts  the minimality of a. 

For  the following see e.g. [13]. 

2.3. CLAIM. For ~o-sequences of ordinals 7, v let 7 <b v mean {n : 7 ( n ) <  

v(n)} is cofinite. Note <b is a partial ordering. 

(1) If  7~ (i < 8) is <s-increasing, cf 8 > 2 "°, then it has a least upper bound 7 

(i.e. v <b 7 iff (~i < 8) v <~ 7~). 
(2) If A = E,  A,, A. < A.+l < A, A. regular, A > 2 '%, then there is a subsequence 

(A '. : n < o9) of (A. : n < oa), a regular A* _-> A and 7~ @ II A ', for i < A*, such that: 

i < j ~ 7~ <~ 71 ; for 3 < A*, if cf 8 > 2 "°, 7, is the least upper bound of (7, : i < 

8) (for <~)  and (A'.: n < ~o) is the least upper bound of (7, : i  < A*), Note 

A* --< A" .  

(1) We choose by induct ion on i an ~o-sequence of ordinals u~ such PROOF. 

that 

(a) for  

(b) for  

where  we 

for  every  

no j < i ,  uj<-bv~, 

no j < &  u~Sb'r b, 

first set vo(m) = sup{7~(m) : i < 8} for  all m E o~. We cannot  define v, 

i < (2"°) +, for  otherwise by the E r d 6 s - R a d o  theorem,  since by (a) 

[(2"o)*]: = I,_J {{i , j}:i  < j  < (2"o) ÷, uj(m) < u~(m)} 
memo 

we would get a descending oJ-sequence of ordinals,  contradict ion.  

So let u~ be defined for i < a only, where  a < (2"°) +. Le t  A = {u~(l): l < o9, 

i<o~}, and for  every  j < &  let 7 * E ~ A  be defined by 7 * ( n ) = m i n { f f E A  : 

> 7j(n)} for all n < o~. This is possible by our  choice of Vo. Clearly r b = b 7  j, 

and there  are just = < (2N°) ~° < cf 8 possible 7 " ,  hence for some 7*j = 77' for  

unbounded ly  many j < 8. We check that  7 "  is the requi red  least upper  bound.  

Clearly if (3i  < 3) v <b 7~, then v <b 7*.  Now suppose (Vi < 8) u ~b 7 ,  Then  

(Vi < 8) v ;N0 7~ so for some i < a, v~ <b v. Suppose v <b 7*  and 7*  = 7 L  Now 

Vn ( v ~ ( n ) < 7 * ( n )  iff v~(n)<7k(n)).  Hence ,  since V~<--__bV<b7 * we have 

v~ <b 7k, contradict ion.  

(2) Choose  inductively on i, 7~ E II,<~ A, such that  7~ <~ 7~ for  j < i. As 7i ~ 7J 

for  i ~  j, it follows that  for  some i < ] II,<~A, I +, 7~ cannot  be defined;  so suppose 

3 is the first such i. We can easily prove  that  8 is limit (otherwise 



Vol. 45, 1 9 8 3  UNCOUNTABLE BOOLEAN ALGEBRAS 111 

r/8-1<b ( r / 8 _ l ( n ) + l : n  < w ) ,  contradict ion)  and of cofinality > A  (otherwise 

cf 8 <= A hence cf 8 < A hence cf 8 < ) t ,  for  some n;  let 8 = (.3~<cf~i(ff) with 

i ( f f )<  8 for ~ < c f S ,  and let r/8(m) be 0 for m ~ n and sup{r / , (o(m)+ 1 :ff < 

cfS} for r e > n ) .  

So c f8  > )t _-> 2"", so by 2.3(i)  (r/, : i < 8) has a least upper  bound  r/*. Clearly 

w.l.o.g, r l * ( n ) =  A, for  every  n. If rt* <~ (~, : n  < w) then modifiying r/* on a 

finite set we obtain a function which can serve as r/a, contradict ion to the choice 

of 8. Hence  A = {n : "0*(n) = A(n)} is infinite; let it be A = (nk : k < co), strictly 

increasing. Let  h~, = h,~ and r/'~ = (r/~(n~): k < oJ). Clearly ( r / ; : i  < 8) is <b-  

increasing, and it is easily checked that (h~: k < ¢0) is the 1.u.b. of (r/'i: i < 8). 

Let  A* = c f 8  and let i(~) (~ < h*) be increasing, cont inuous and unbounded  

below 8. We define r/'~- for ff < h* as follows. For  ff = 0, ff a successor,  or cf ~ -< 2"" 

let r/" = r/;(~). For  cf ~ > 2"" let r /"  be the l.u.b, of rl;  for  j < ~ (by 2.3(1)); for all 

n < ¢0 let r/'£-(n ) = min ( r /" (n  ), r/;(~)(n )). Clearly h*, 7/'; (i < h*), h"  (n < o) ) are as 

required.  

2.4. CLAIM. Suppose h is singular, cf h > 1~o, f is a function from ~<h to finite 

subsets of ~'=h (or even subsets of ~'=h of power < cf h) .  Assume h = E~<~f, M, M 

strictly increasing and continuous for i < cf h ; we suppose M = E,<., &,,  where 

cf A < &o, Vn (h,,, < hi,,+~, hi,. E {hi  : ] < i}). Let S = {i < cf h : cf i = ~o}; recall 

that S is stationary. 

Then there is a closed unbounded C C cf h such that for all i E C 71 S there is a 

T such that 

(1) TC_ I,.J,<~l-I,,<,h~,,, ; ( )@ T, T closed under initial segments; 

(2) VT/E T(l(rl) = n :::5 I{a < ~.,.. : 7/^(ce) ~ T}I = & . ) ;  

(3) V r / E  T ( f ( r / ) C  ~%~,). 

PROOF. For  each 7/E~>,~ choose g ( r / ) < c f ) t  so that f ( r / ) C  U { ~ f f : f f <  

)t,(~)}. Then  instead of (3) we want 

(3') V r / E  T ( g ( n ) -  < i). 

Now we define a game G, for  each i < cf ,~ such that cf i = 1~o: the game is of 

length o9, and in the n th move,  player  I chooses A ,  C_ )t~,. with ]A,  [ < L,,, and 

player  II chooses 7/. E &..  Player  II wins if (1 < n ~ ,/~ < ~/.), r / ,E  A,,  and 

g((r/0, '"  ", r / , ))_- < i; otherwise player  I wins. Now 

(4) / f i < c f &  c f i = N o ,  g(( ))=<i, and II has a winning strategy, then a 

desired T exists. 

For,  let r/ be a winning strategy for II. Thus  Vn E o), VA E "+'~,~ such that  

Vm =< n (A,, E [~,,,, ]<*,.- ) we have r/A ~ &, ,  rtA ~(,.+~) < r/,~ for  all m < n, r/A ~ A,,  
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and g((r/Ar,,'" ",r/ate,+,)))-- -< i. Then T ={(r /At1,  "" ", r/Al(,,+,)): s u c h  A}U{( )} is 
as desired. Thus we may assume 

(5) S' = {i <cfA :cf i  = oJ and II does not have a winning strategy for Gi} is 

stationary in cf A. 

Now the game Gi is open, so by the Gale-Stewart theorem is determined. 

Hence for each i E S' choose a winning strategy F~ for I. Thus 

(6) Vn ~ ,  V n ~H~<°A,,~ (F,(n)~[A, ,°F, , . ) ;  

(7) VrlEIq,.<~L.m either (a) 3 1 < n < ~ o  (r/t>-r/,) or (b) 3n<o~,  

r/, ~ F~(r/[ n) or (c) :In < w, g(r / [  n ) >  i. 

Now choose a regular K >No SO that g, (F~:i ES ' ) ,  (A[ : i  < c f A ) E H ( K ) .  

Remember H(K) is the family of sets with transitive closure of power < K, and 

that (H(K), E )  is a model of ZFC-. Let < be a well-ordering of H(K). 

For all 6 < c f A  let A8 be the closure of 8 U { g , ( F ~ : i C S ' ) ,  (A~: i<c fA ' )}  

under Skolem functions within the structure (H(~),  ~ , <  ). Then C ={8 < 

cfA :A~ fqcfA = 8} is closed unbounded in cfA. Thus there is ~ @S' and an 

elementary substructure ( N , E , <  ) of ( H ( K ) , E , <  ) such that I N l < c f h  

and N M c f ( h ) = &  with g, ( F ~ : i E S ' ) ,  ( h ~ : i < c f h ) E N ,  clearly A ~ N  iff 

i < &  hence h~.m belongs to N for each m. However ~ N ,  hence {Aa.., : 

m<~o}~_N. 
Now we define r/EII, .~A~,. ,  so as to contradict (7). Suppose r/,. E N 

constructed for all m < n. Using elementarity and absoluteness of suitable 

formulas we see that the set 

A * = U {F~((rto,"" ", r/n-~)) : j < cf A, {r/o, ' '-,  r/~-~) E Dom Fi, j E S', 

hj,o = h~,0,"" ", hj,._~ = hs,.-~, hi,. = h~..} 

has power < h6,. and is in N. Since Ba(r/._~ < a < h~,. ^ a K A*) holds in 

( H ( K ) , ~ , <  ) it holds in ( N , E , < )  and this gives 77.. this completes the 

construction, and it is easily seen that (7) is contradicted. 

REMARKS. (1) Rubin and Shelah [9] deal with such theorems for their own 

sake. 

(2) We can get in this direction more results. If 2¢f~< A, £ .  regular, 

then we can find a closed unbounded set {a(i) : i < cfh}, a ( i  + 1) successor and 

TC~>A, such that: ( ) ~ T ,  r / E T ,  M a x [ o r c o ( r / ) ] < £ + ~ < h j  implies 

{a <Aj : r /^ (a)E T} has power hi, and implies also g ( r / ) < j .  

(3) In (2) we can replace "2¢~*<A" by "there is a family S of closed 
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unbounded subsets of cf h such that [ S t < A, and every closed unbounded subset 

of cf A contains one of them." 

On tile other hand, if IX =IX<" in V let us add h >IX generic closed 

unbounded subsets of # (by O = {f : D o m f  a subset of h of power < Ix, f ( i )  the 

characteristic function of a closed bounded subset of Ix}, the characteristic 

function of C is U { f ( i ) : f  in the generic set}). 

Let {C~ : a9 E ~>h} be another enumeration of {C~ : i < h}, and define g: 

gOg^(a)) = min{i < cfh : i  E C~, hi > c~}. 

Clearly for this g the conclusion of remark (2) fails. 

(4) We can generalize Claim 2.4 as in [16], [17], by attaching a filter for each 

node, i.e., 

2.5. CLAIM. In 2.4, suppose that for ~ ~ ~>h, D,,~ is a (cf h)+-complete filter 

on {T/A(a) : a < #} which include {~/^(a) : do<  a < Ix} for each do< Ix, then in 

the conclusion we can demand: 

(C) f o r ~ ) ~ T ,  {r/^(a):  "O^(a)ET, a < £ , , } / Q m o d D , a ~ , ° .  

The proof is the same, only in the definition of the games G~, instead of 

]A. I < £ , ,  we demand A,  = Q m o d D ,  ..... , , .  

Of course, the fact that we use the tree ~>h is just for notational convenience. 

An example of such a system of filters is that for 

I = {((O~0, /30) ,  " " ", (OLrt l ,  /3n- - l ) )  : ~it'l, /3l < ~k for I < n, n < to} 

it is natural to define for ~/E L Ix < A a filter D,, ,  as the filter on {~/^((a,/3)) : 

a,/3 < A} generated by the sets {rl ̂ ((a,/3)) : a,/3 < 3,, dE/3} for any equivalence 

relation E on A with < IX equivalence classes. If Ix is regular, X < IX ~ X <* < IX 

then D,, ,  is K-complete. 

2.6. THEOREM. Suppose A is singular, A ",, = A. Then for any IX, IX*" < A, 

(1) KT~ has the full strong (A, A, Ix, No)-O,r-bigness property, 

(2) Kp, r has the full strong (A, A, Ix, No)-4,p,r-bigness property. 

(3) Suppose in addition Ix <K < A, K regular, then in both cases we can replace No 

by K, if we add "for f which are strongly finitary on P~". 

We concentrate, usually, on (1). For the changes we need for (2) see the proof 

of 2.8. We could have used the partition theorem on I ~ K;',  but prefer another 

way. 

C a s e A .  A = U = X ~ O ;  / z""<h ,  A > 2  ~'' 

PROOF. (1) w.l.o.g. (VXJ<X) X'~"<X, X=Y,,,<~X,, X- a successor, X2 = 

(x . )  "°, Ix < xo. 
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We let I " =  U.<~I-li<,Xi, I '  o = I  UII~<~X~, and we shall choose I~ (a < h ) ,  

[o C_ L C_ I '  such that (L "a  < h) will exemplify our conclusion. For this we have 

to deal with all pairs a < A, F"  L ---> M~,Mo (E~<,,~/a 18); there are too many such 

pairs, however the number of pairs (a, F I 1o) is =< h ~ = A, so let ((a~, F;)" ff < A) 

be an enumeration of all such possible pairs each appearing A times. Define by 

induction on i f<A,  I~.~ (a < h ) ,  J~,~ (a < h )  such that: 

(a) Io,~, J~.~ are disjoint subsets of I ~-  I ° increasing with if, 

(b)Y~(IL., [+ lL . , I ) - -<x+ l f f l ,  
(c) if I °C_I 'C_I ' ,  I~.~c_I', J o . ~ n I ' = ~  for a < A  and F:I '~--~ 

M ~,.,, (Y~ <,.~ ~ I ~), 

F extends F~ then the conclusion of Definition 1.2 is satisfied (for KT~, tb = t),~). 

Clearly it is enough to carry the induction (and then L = I"U U~(,I~.c 

(a < A) exemplify the conclusion). 

So let us do the ~-th step (so we suppress ~ as an index). Let 

t *= ,Y__, U &~, I *=  U U &~u{(/3):/3<.~} 
~<A ,~<,5 /3<2, ~<,~ 

(so I + universe will be U~,.,~,~ ( U~<~/~,~ x {/3})); w.t.o.g. F~ is into M*~(I+). 
We let (n,e~)tl = ( n  rl, a).  

Remember that the universe of I + = E~<~.~/~, U~<~I~.~ is u {I~.e x {/3} : ~ < 

and /3<A, /3/a~}.  Let, for (n , /3 )~ I  +, (n,/3)rk =(nr~,~) and /((n,/3)) = 
l(n). Let F(n) be the set of u U I + "appearing" in F~(~/). Call a T C_ I" big if T ° 
is closed under initial segments, ( ) ~  T and for every ~/G T, / ( 'q)= k, 

{i : ~ ^(i) @ T} has power X~. By Rubin-Shelah [9] theorem 4.9 there is a big 

T C_ I" and A~ for each , / ~  T such that 
(1) A .  is a countable subset of I +, which includes F(rt), 

(2) if u = r~ , [k  = 'oa[k ,  rh(k)/r~z(k),  r l , ~ T  and ~2~T, then A ~ , n A ~ =  
nv. 

We can easily find T', B~ ('O ~ T') such that: 

(a)  T' _C r is big, 

(/3) for every u = o^( i ) f f  T' there is p~ satisfying: 

(/31) p~ = n^(j~) C T, j~ < i, 

(/32) p, Z T', but (Vj < i) [~/^(j) ~ T ' ~  j < j~], 

(/33) f(u), f(p~) realizes the same quantifier free type over B, in I +, 

(/34) B, = B~ U A~ U A~o, B~ countable closed under initial segments. 

The definition of T ' =  T 'n (U , ,~ , f l ,< , , x~ )  and B~ ('O ~ T',) is done by 

induction on n. 

Clearly 
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(*) i f n = v l I l = v 2 I I ,  v ~ E T ' , v 2 C T ' , v , ( 1 ) / v 2 ( l ) t h e n B ~ , N B ~ , ~ = B . .  

Hence  for all rl C L i m  T ' ( =  {v E I ~-  I " : ( V / )  v II  C T'} except)  -< I ~ I +X  

many,  the following holds: 

for every  O ~ I+. (**) 
O [k  ~ B~t,~, 

l ( o ) = c o  for s o m e k ,  m < o ) ,  

o r (k + 1) ~ U B~.. 

Let  "r k E Lim T'  satisfy (**) and we define 

U I~,~ 
~--c¢ 

J~,~ = U~<~J~.e U {71 : ~ E I '  - I °, for but 

n ~  I~,~}. 
Let  us prove we have defined I~,~, J~.~ (13 < A) as required.  Now (a), (b) are 

easy, so assume I ° C  I'C_ I ' ,  I~,; C_ I ' ,  J~.~ N I" = Q, F* extend F~, F* :I' ,--* 

M*,.,,(Y,o<~,~/~I;). Now F*(Tk) is r ( v o , . . - ,  u, ,), ut ~ I +, n is finite. 

We can assume (letting 7/* = ~ )  u~ E U , . B , d , ,  iff l _--> n(0). By (**) for  each 

1 < n(0) for  some k ( l ) < w .  

otherwise.  

every  k < w ( ~ [ k , / 3 ) E U , : ~ B , , ,  

v~[k(t)E U B,.r,., v t r (k( l )+ l )~ U B,.,~. 
r r l  m 

For  m < w let B., = B.*rm. Choose  m ( * ) <  o~ large enough so that u~ E Br.c.~ for 

I >= n(O), vt t k ( l )  ~ B,.c. for  l < n(0), and for l < n(0) 

Min{a  : vt t k ( l ) ^ (a}  E B,.,.), o~ >= vL(k(/))} 

= Min{a  : u~ r k ( l ) ^ ( a )  ~ U B.,, a >= u~(k(/))} 
m 

(or both are undefined).  

Now (-q*,'q* t m(*)),  (~,O~.lml.) are as required.  

Case B. A = A "o is strong limit singular 

PROOF. Choose  Ai (i < cf A) such that: 

(a) Ai is increasing cont inuous with limit A, (2") +=  A0, 

(b) & is strong limit for  limit 6 < cf A, 

(c) A~+l is a successor cardinal moreove r  ~,*, < A~+, for X < A,. 

For  each limit 6 < cf A, cf 6 = 1~,, choose &.. E {hi+, : j  < 6}, & = E.<~h~,., 

As,. < hs,.+l. 
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We shall choose I,.. (6 < cf A limit, cf 6 = N,,, a < A~), I~.. C_ II. <~ A~.., and let 

6 < c f A  limit, A~ > c~} such that: 

(*) if ~ < cf A is limit, cf 6 = No, a < A,, F : L, M ~,.,,,, (Xt~<~.~.,, J )  and some 

big TC_ I,..J.<o,l-I,<.A,.,, for every  7 / ~  T, 

then the conclusion of Definit ion 1.2 is satisfied. 

This is enough by 2.4 and the proof  that it can be satisfied is like that of Case 

A. 

Case C. ~ < x -o< h < 2 ~ 

The  proof  is by 2.7 (for 2.6(1), (3)) and 2.8 (for 2.6(2), (3)). 

2.7. THEOREM. Suppose A '% = A, /x <= A, Then 

( i )  K~ has the full strong (2 ~, A +,/z, 8o)-$,¢bigness property. 

(2) I f  in addition A < ~ <= A, K regular, then we can replace ~to by K provided that 

we add "for f which are strongly finitary on P~". 

REMARK. The  interesting consequence  is when we replace both  2 A and A ÷ by 

some X, A + < X =-< 2~. 

PROOF. L e t  S ~ _C {,5 < A ÷ : cf,5 = Mo} (for a < A) be pairwise disjoint statio- 

nary subsets of A +. Let  A~ be a subset of A for i < 2 ~ such that no one  is included 

in a union of countably many others  (in (2) - -  less than K many);  such A~ (i < 2 ~) 

exists by Engelking and Karlowicz [4]. 

Let  S~ = U ~ A ,  S ~, L = ~>(A +) U {77 : r / a n  increasing to-sequence of ordinals 

< A + whose limit belongs to S~}. 

Suppose f :L---~M,,~ (Xs~Ij), and let [ ( r / )  = ~',((v,,0,j,,o), (v ,A, j , ,1) , '") ,  

v,.~ @/s,.,. For  any r / E  ~(A +) let F ( r l ) =  {j : for  some n < to, and l, j = j~r.,~}. 

Clearly F( r / )  is a subset of 2 ~ - { i }  of power  _--<No (or < K  in (3)), hence 

A , ~  1,3mvt,)A , so there  is a < A such that a ~ A ~ -  Uj~v~,)A s. Now for each 

a < A ,  W~ = { ~ I E O ( A + ) : a ~ A i  for  j E F ( r / ) }  is a closed set, and by the 

previous sentence 1,3,~A, W~ = ~(A+). Hence  by 1.2 of Rubin  and Shelah [9] 

lemma 2.14, there  are a and T_C ~>(A +) such that: 

( a ) ( ) E  T, 

(b) r / E  T implies that for  A ÷ ordinals " / <  A +, ~/^(7) E T, 

(c) for  every  r / ~  T, j = j,r~,~ : a does not  belong to Aj. 

Now we can work with T, and get a contradict ion as in 2.1 by restricting f to 

I'~ = (~>(A +) fq T)  LI {~/~ ~(A +) ¢q L: for  every  n < co, r / r  n E T}. 
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2.8. THEOREM. Suppose /z --< 3, = a"0, then 
(1) K~,, has the full strong (2*, h +,/z, l%)-qsp,~-bigness property. 
(2) I f  in addition h <~ <= h, K regular, then K~,r has the full strong (2', h +, tz, K)- 

bigness property for f which are strongly finitary on P~. 

PROOF. (1) Define S ", &, Ai as in the proof of 2.7 and 

I, = {C(ao, 13o), • • -, Ca.,/3.). a.+~) : n < to, a, < 13, < a +} 

U {((o~o, 13o), (a , ,  ~ , ) ,  • • . ,  (o~,,,/3. ) , . . .  ) : n < ,.,,, o~, < 13, < o~,+, < ,~* 

for l < w  and U a .  belong to &} 

Suppose f :/+-->M,.K(Ej,+~/,), let X be big enough,  N* be an expansion of 

(H(x) ,  E) by Skolem functions, and individual constants for K, Iz, h, i, C//: j < 

2"}, (Sj : j  < 2;'), (S" :a <A).  
For 7 / ~  ~ ( 2 ' ) ,  let N,  be the Skolem hull of {+7(1), N,t, :1 < l(r/)} (in N*), 

hence if 1(+7) = to, N~ = U,<~N~r, and N,p~ E N,r~+t. 

For  +/~+'(h+),  let F ( ' o ) = N ,  N2 ~ -{i} ,  so F( 'q)  is a countable subset of 

2 * - {i}, hence A, ~ U j ~  Aj ; let W~ = { r / ~  ~ (h +) : a E Aj for j E F(r~)}, and 

there are a,  T as in the proof of 2.7: 

( a ) ( ) E  T, a CA, ,  

(b) , / E  T implies that  for a + ordinals, 3' < a +, ~/^C3'} E T, 

(c) for *! E T, if ] E N,, ] < 2", ] ~ i, then a does not belong to Aj. 

Now we choose r / ~  ~(A +) such that " q ( n ) > s u p ( N , r ,  fqa  +) and 

U , < ~ + / ( n ) E & ;  this is possible by (b) and as & is stationary, [8 E &  

cf a = No]. Now as in the proof of 2.2, we define by induction on n, a. ,  13.; 

7/(n) < a .  < 13. E N,r~.+u and ((no, 130)," " ", Ca,, 13 . ) , ""  ) will exemplify what  we 
need.  

2.9. TrmOREM. (1) Suppose/* <= A, {A+ : i < X} is a family of subsets of A, no 
one included in the union of ~o others, then KT, has the full strong 
(X, A'o + a +,/,, l¢o)-~,~-bigness property. 

(2) The parallels of 2.7(2), 2.8 (in the sense 2.9(1) is parallel to 2.7(1)) hold. 

PROOF. The same proof,  using the A+'s above. 

§3. Applications to Boolean algebras 

3.1. DEFINITION. (1) For I E KtOr let Btr(J) be the Boolean algebra generated 
freely by x~ (r/E I) except that r/<~ v ¢:> x, > x~. 
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(2) For I E Kp,, let Bp,r(I) be the Boolean algebra generated freely by x~ 

('q E I)  except that for rt E I, l(r/) = o~, n < w, 7 /=  ((ao,/3o), • • -. (a . , /3 . ) .  • • ), the 

following holds: 

X n ~ Xnr,,~<,~,)A X n n X,~r,^<t3 P = 0. 

(3) For I E K ;  such that every r / C / ,  which has an immediate successor, has 

infinitely many immediate successors, let /3,rr(l) be the Boolean algebra gener- 

ated freely by x, ( r / E  I)  except that x,̂ <~> n x,̂ <0> = 0 for a / / 3  and x, < x. for 

v < ~ ,  0. 

3.2. NOTATION. We let x stand for tr or ptr or trr. 

3.3. DEFINITION. For Boolean algebras B, /3t and a * E B l  we define the 

"/3-surgery of 131 at a *" or "surgery of 131 at a * by/3", /32,  as a Boolean algebra 

extending /3, B2 = [/3~ [ ( -  a*)] x [(B~ r a* )*  13 ] where x is a direct product * 

free product. Alternatively Bz is generated as follows: first make B disjoint to/31 

(by taking an isomorphic copy) and then B2 is generated freely by B~ U B except 

the relations 

OB, = 0B, 

a N b = c  ( fora ,  b , c @ B , , a N b = . c i n B ~ )  similarly for U ,  

1B, -b=c  (forb,  c E / 3 ~ , l ~ , - b = c i n B t ) ,  

a n b = c  ( fora ,  b , c @ B ,  a n b = c )  similarly for U,  

a < a *  (i.e. a N a * = a )  ( f o r a E / 3 ) .  

3.4. CONSTRUCnON. Let x E {tr, ptr), ,~ a cardinal. The idea is to construct a 

Boolean algebra by defining an increasing continuous sequence B, (i < a ) , /30  

trivial and we get B,+, by a surgery of B, at a* ~/3,  by B~ = B~,(I,), ILl = ,t, 
I~ ~ K~'; where I~ is fully O,-unembeddable into ~;i,,~//. We denote  B = U~<~B~ 

by Sur (I ,  a~ : i < a) .  Usually we want U,<,  B, -{0} = {a* : i < a}. 

DEFINmON. (1) A B.A. satisfies the ~t-chain condition if there are no 

,~-elements which form an antichain (i.e. they are / 0 ,  the intersection of any 

two is zero). 

(2) A B.A. satisfies the strong )t-chain condition if among any )t-elements 

there are )t which are pairwise not disjoint. 

3.5. CLAIM. Let x E {tr, ptr}, I E K~', A uncountable regular. 
(i) I f  x = tr, then B~ (I) satisfies the strong A-chain condition. 
(ii) I f  x = ptr, then B~ (I) satisfies the strong (2%)+-chain condition. 



Vol. 45, 1 9 8 3  UNCOUNTABLE BOOLEAN ALGEBRAS 119 

PROOF. (i) First we take x = tr and check the strong A-chain condition. Note 

(1_) x~,n...nx,, n( -xOn. . .n( -x~, )=o iff3i, j(v,<=r/j). 

Now for F@ [I]<~ let xv = II~Evx, and ~F = II~v(--X~).  TO check the strong 

A-chain condition it suffices to take FC_[I] <~ x [ I ]  <~ with I F t = A  and 

V(F, G)  E F (xr A ~ / 0 )  and find F ' E  [F] ~ s.t. V(F, G), (F' ,  G')  E F', x~ A £6 r-I 

xr, r 3 £ ~ , / 0 .  We may assume that ( F : ( F , G ) C F )  and ( G : ( F , G ) E F )  are 

A-systems, say with kernels K~, K2 resp. We may assume (F, G ) / ( F ' ,  G')  

F ¢ F '  and G ~  G' .  We may assume 3m, n Eo)  V ( F , G ) G F  

(I F } = m ^ 1 G I = n). Say r/v : m --* F, r/~ : n --> G (are one-to-one, onto). We 

may assume Vj < n, V(F, G),  (F' ,  G')  E F (length r/o (/') = length r/c (j)). Clearly 

then, using the A-system assumption, 

(2)V(F, G)  ~ F Vi < m V] < n there is at most one (F',  G')  E F s.t. r/a,(j) = r/v(i). 

Now 

(3) Vi < m Vj < n VF'@ [F]* 3 F " ~  [F']* V(F, G), (F' ,  G')  E F" (r/~(j);~ r/v(i)). 

For, let < '  be a well-order of F', 

J,, = {{(F, C),  (F', C')} ~ [r 'f-:  (F, G) <~ (F',  G')  and r/o (/') _-< r/F'(i)}. 

J~ similarly with '>  in place of <l. Then [F'] 2 = Jo U J~ U ([F'] 2 - (J0 U J~)), and 

A --* (to, to, A) yields (3), using (2). 

Applying (3) m .n  times gives the desired result, by (1). 

(ii) The case x = ptr is similar, but more complicated. First note 

(4) x,~ n . . .  n x,,o 1 n ( - X~o) n - . .  n ( -  x . . . .  ) = o 

iff one of the following conditions holds: 

(a)3i ,  j < m (l(r/~) = w and Such(r/j, r/~)), 

(b) 3i < m, 3i  < n (l(r/,) = o) and Suc~(vj, n,)), 

(c) 3i, j < m  ( l ( r /~)=/ ( r / j )=o)  and Zip<o) (r/,tp and Zia, /3, I/ [r/~(P)= 

o)(a,/3), and r/j(p) = (/3, y))])). 
Again we take F C [I]<~ x [I]<~ with [FI = (2"0) + and V(F, G)  E F (Xe rl ) ?a /0 ) .  

We get A-systems as before. We may assume (F, G ) ¢  (F' ,  G ' ) f f  F ~  F'  (but 

possibly G = G '  always). We get m, n, rtr, r/b as before, and again make the 

length assumption. Now 

V(F, G)  E F Vi < m Vj < n there is at most one 

(5) 
(F' ,  G ' )  E F s.t. Suc~ (nMj) ,  r / d0 ) .  
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Hence  as before  we may assume 

(6) Vi < m Vj < n V(F, G) ,  (F ' ,  G ' )  E V(--n Succ (To'(/'), nv(i))). 

Similarly we may assume 

(7) Vi < m Vj < n V(F, G) ,  (F ' ,  G ' )  E F(-m Suc ,  (r/c,(j), nv(i))). 

Now if ~r, ~- E I with l(cr) --- I(~') = o~, and i f p  < w, we define ~rRpr if[ ~r [p  = r [ p  

and 3a, /3 ,  y (~ (p )  = (a,/3> and ~'(p) = (/3, 3')). Now 

Vi, j < m  V F ' C [ F ]  ~ 3 F " E [ F ' ] "  V(F ,G) , (F ' ,G ' )EF 

(8) 
(Vp < w) --1 (~z(i)Rpnv,(j)) 

w h e r e / z  = (2"0) +. In fact, we can use the part i t ion re la t ion /z  --* ((3)~, /z )2, noting 

that  for  each p < w there  do not exist (F, G) ,  (F ' ,  G') ,  (F", G")  ~ F such that 

rlz(i)Rpr/v,(j), nz(i)Rer/vo(j), r/v,(i)R/r/z-(j); o therwise we would get xz, = 0. F rom 

(8) we see that we can assume 

(9) Vi, j < m V(F, G) ,  (F ' ,  G ' ) ~  FVp  < 0o (nz(i)R,nz,j). 

Hence  by (4) we are finished again. 

3.6. CLAIM. If Bl, B satisfies the strong )t-chain condition, a x E B, B2 is the 
result of a B-surgery of BI at a x, then B2 satisfies the strong )t -chain condition. If  
one orB1, B satisfies the strong )t-chain condition, and the other only the )t-chain 
condition then B2 satisfies the )t-chain condition. 

3.7. CLAIM. I fB2is theresul to faB-surgeryofBlata*thenB~<B2(i .e .B~a 
subalgebra of B2, and every maximal antichain of B~ is a maximal antichain of 
B2. This is also called "B2 a regular extension of B~"). 

PROOF. Trivial. 

3.8. CLAIM. The relation < between Boolean algebra is a partial order and if 

Bi (i < a) is increasing continuous then Bo< Ui<~B~, and if each satisfies the 

(strong) x-chain condition, then so does U,<~ B, for regular X. 

PROOF. See Solovay and T e n e n b a u m  [19] for  the x -cha in  condit ion,  and 

Kunen  and Tall [5, p. 179] the strong x -cha in  condit ion.  

3.9. CLAIM. (1) In the construction 3.4, II B, H = )t for i > O, i < )t +. 
(2) In 3.4, if each 13, (I) satisfies the strong x-chain condition, X regular, the 

B = Sur (L, a*  : i < cz> satisfies the x-chain condition. 
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PROOF. (1) Trivial. 

(2) By 3.5, 3.6, 3.7, 3.8. 

3.10. LEMMA. (1) Theconstruction 3.4, B~, isrepresentableinM*o,~o(E~<aL ). 
(2) Moreover Ba [ ( 1 - a * )  is representable in M*o,. o (Zj<~.j~,Ij). 

(3) If  B~ satisfies the A-chain condition, then B~ (the completion of B~) can be 
represented in M * ,( ~j<~ Ij ). This representation can extend the one from 3.10(1). 

(4) Similarly for 3.10(2). 

PROOF. (1) Define f ( 0 ) = 0 ,  j r ( l )=  1. For b EB~ and b / 0 , 1 ,  say b first 

appears in B~+~. Say 

b = (b', ~ cfl,) 
j<m 

with b'CB~ r ( - a * ) ,  cj E B ,  [ a* ,  dj EB,r(L).  Say (by induction hypothesis) 

jr(b') = ~-, f(cj) = o- i, jr(a*~) = ~r, dr = pj(x~i,'" ", x~;,). Then we set 

f (b)  = Fk (tr, r, o-l, • •., ~rm, o"~, • •., ~',), k codes (m, n, po,'" ", p,.-1) 

where Fk is a suitable function symbol. Thus, f (b)  codes all the relevant infor- 

mation about b. 

(2) We may assume that a* ~ 0, 1. We go exactly as in (1), using ( - a * )  in 

place of 1, and working always with B~ r ( -  a*). Note that no terms involving Ik 

appear then. 

(3) For each a ~ B~ we can fix K < A and a sequence (b v : y < K) of elements 

of B~ such that a -- Z~<. b v ; then let f~ = F(cr~ : y < K), where jr(by) = o-, for all 

~ /<K.  

(4) Similarly. 

3.11. LEMMA. (1) Suppose I is strongly (No, No, tp,r)-unembeddable into J, B a 
Boolean algebra representable in M*o,,o(J ). Then B,~(I) is not embeddable into B. 

(2) Suppose I is strongly (Ix, K, ~r)-unembeddable into J and B a B.A.  
represented in M* , (J ) .  Then B~r(I) is not embeddable into B. 

PROOF. (1) Let G:B---> M*.o.,o(J) be a representation of B into M*,,o.,,o(J), 
and h be an embedding of B~r(I) into B. For r / E  I define jr(r/) = g(h(x~)). 
As I is strongly (No, N0, ff,~)-unembeddable into J, there are vL, v2, r/, n 

such that /J1 = '17 I (  n +1),  v~In = v:rn, v2(n)< v,(n), / " (Vl)  = l(v2) = n +1  and 

(f(v3, jr(n))~ (f(,,~),/(n)) mod M*o..o(.O. Hence (because g is a representation) 

h(x.,) < h(x.,) ¢:> h(x,,) < h(x~,~) (in B). But h is an embedding hence x~ < x~, ¢:> 

x, < x~ in B,~(I) contradicting the definition of B,,(I). 
(2) Similar. 
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3.12. LEMMA. Suppose I is strongly (3,, K, t)p,~)-unembeddable into J by f such 

that f(*l) is strongly finitary for 71 E I, 107) = to. I f  B is a "Boolean algebra 

representable in M*,,.,,,(J) by g, B C B~, B dense in B~, g~ extends g and is a 

representation of B, in M* , ( J ) ,  then Bp,~(I) is not embeddable into B~. 

PROOF. Suppose  h is an  embedd ing  of Bp,~(I) into B~. For  "O E I define: if 

l ( ~ ) <  to, f ( r / )  = g~(h(x,) ; if l (r t)  = to, choose  an E B, 0 <  a n < h(x~) (possible 

as B is dense in B~) and let f ( ~ ) = g ( a , ) .  As I is s t rongly (/z,K, Op,~)- 

u n e m b e d d a b l e  into J by f s t rong finitary on {7/E I : l (r /)  = to} there  are u~, u2, 77, 

n such that  u , = ~  I ~ ^ ( a ) ,  u~_=~ [7t^(/3), ~ ( n ) = ( a , / 3 ) ,  a < / 3  and 

(f(v,) ,  f ( r l ) )  ~ (f(u2), f ( n ) )  rood M*.(J ) .  

Hence ,  as g~ is a represen ta t ion  

(*) a. < h(x.,) ~ a. < h(x . ) ,  a. n h(x~,) = 0 ¢~ a. n h ( x . )  = O. 

But in B, x., => x., x. 2 N x n = O. Hence ,  as h is an embedding ,  

h(x~,) >- h(x , ) ,  h(x~)O h ( x . )  = 0. 

But  0 <  an < h(x , )  so h (xv , )>  a,, h ( x O O  a ,  = 0, contradic t ion to (*) above.  

We  have proved  that  Bp,r(I) is not e m b e d d a b l e  into B. 

3.13. CONCLUSION. Suppose  K~ has the full s t rong ()t,&No, l, lo)-~,r-bigness 

p roper ty .  Then:  

(1) The re  is a rigid Boo lean  a lgebra  B satisfying the l~-chain  condi t ion which 

has power  )t. 

(2) Moreove r ,  if a, b E B are / 0, a - b ¢ 0, then B [ a cannot  be e m b e d d e d  

into B rb (hence B has no one- to -one  e n d o m o r p h i s m  ¢ id). 

(3) M o r e o v e r  we can find such B~ (i < 2"), I B, I --= A ; and if a E Bi, b E Bj, i / j  

or  a - b ~  0 then  B~ [ a cannot  be  e m b e d d e d  into Bj r b. 

(4) Moreove r ,  in (1), B has no one- to -one  embedd ing  ~ id into B, and 

similarly for (2), (3). 

PROOF. First note  that  if f is a one- to -one  e n d o m o r p h i s m  ~ id of any 

Boo lean  a lgebra  B, then  there  is an e l emen t  a / 0  with B ra i somorphic  to 

B [ f ( a )  and a N f ( a )  = 0. For,  choose  x with x ~ f (x) .  If x n - f ( x )  ~ 0 we can 

take  a = x n - f ( x ) ;  if - x  n f ( x ) / 0  we can take  a = - x  O f ( x ) .  H e n c e  for  

(1) and (2) we only need  to find B of power  )t such that  if a, b E B are non-zero  

and  a - b e  0, then  B [ a  cannot  be  e m b e d d e d  in B r b. 

Now let {L : a < h } exempl i fy  the full s t rong (~,)t, ~0, i~o)-~0t~-bigness proper ty .  
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Let  B = Sur (I~, a*~ : a < A) be as in the construct ion 3.4, such that B - {0} = 

{a* : a < h}. Then  by 3.9(1), [B J = h. By 3.6, 3.8, 3.5, B satisfies the ~l-chain 

condition. Now let a, b E B be non-zero,  with c = a - b ~  0. Suppose f is an 

embedd ing  of B r a into B I b. Then  f ( c )  f3 c = 0, and jr r (B [ c)  is an embedding  

of B rc  into B I f ( c ) .  But c = a*  for some a, hence B,r(I~) is embeddab le  in 

B I c ,  hence in B r f ( c ) ,  hence in B r ( - c ) = B r ( - a ~ ) .  But by 3.10(2), 

B I ( - a * )  is representab le  in M*o.,o(Eo,,~.o<~ I~). This contradicts  3.11(1). 

To  prove (3), let Ai (i < 2 ~ ) be subsets of A, I Ai[  = A, and A~ ~ Aj for  i ~ j. For  

each i < 2  A let ( y ( i , s ~ ) : ~ < h )  be an enumera t ion  of A~ with each e lement  

repea ted  h times. Let  (a  (i, s ~) : s c < A) be one- to-one ,  a (i, s c) < A, for  each i < 2 ~. 

Let  (I,., : a, 3' < h ) exemplify the full strong (h, A, l, lo, ~lo)-qJtr-bigness proper ty .  

Then  let for i < 2  ~ 

a*  B, = Sur (I,~,.~,:,,,~), ,.~ : ~ < h ), 

where for each 7 E A~, B~ - {0} = {a*~, ¢ < h, y(i, s ~) = y}. Now if i < 2 ~, 

a, b E B~, and a - b z ~ 0, then B i t  a cannot  be e m b e d d e d  in B~ r b; this is proved 

as above.  Now suppose i ~ j  both  < 2  *, a E B , ,  bEB~,  and 0 ~ a ,  b, f an 

embedd ing  of B~ t a into Bj I b. Choose  7 @ A~ - Aj. Choose  ~ so that a* = i,~: a 

and 70 ,  s ~) = 7. Then  B,r(I~,,~).~) is embeddab le  in B~ [a, hence into Bs rb. But by 

3.11(2), Bj Ib  is representable  in M*  .... (E~<~I~.~),~,~)). Since 

(a(i, so), 7 ) ~  (a( j ,  rt), y(j ,  77)) for  all r / <  A, this contradicts 3.11(1). 

3.14. THEOREM. For A uncountable and regular, there is a rigid B.A. B of 

power h satisfying the Nt-chain condition. Moreover, B has no one-one endomor- 

phism ~ id, and if a, b E B are non-zero with a - b ~  O, then B [ a cannot be 

embedded in B [ b. 

PROOF. 2.1 and 3.1(3). 

3.15. THEOREM. For h singular with 2 " o < h  and 3."o=h,  the conclusion of 

3.14 holds. 

PROOF. 2.6 and 3.13. 

3.16. CONCLUSION. Suppose K~',~ has the full s trong (h, A, (2"o) +, (2"o)+)-ffp,~ - 

bigness p roper ty  for  f which are strongly finitary on P~. Then:  

(1) The re  is a Boolean  algebra B, I B [ = h satisfying the (2"o)+-chain condi t ion 

with no one- to-one  homomorph i sm from it to its comple t ion  (except the 

identity.)  

(2) Moreover ,  for  every  disjoint non-zero  a, b, there  is no one- to -one  

homomorph i sm f rom B [ a to (B I b) ~ provided that  a - b ~  O. 
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(3) We can also get 2 ~ such B.A.'s such that there is no one-to-one 

homomorphism from one to another (and even from B~ r a, a E B, a ~ 0) to B2 

where B2¢ B1 are in the family. 

(4) If the full strong (A, A, 2 "°, I,l~)-~bp,r-bigness property of Kp,, is exemplified 

by No-stable I 's, then we get Boolean algebras satisfying the countable chain 

condition and then we can replace (~,)t, (2"o)*, (2"o) +) by (;t,)t, N~, N~). 

REMARK. On how to get the l~t-chain condition in more cases, see 6.2, 6.3. 

PROOF. The proof is similar to 3.13. 

We concentrate on (2), and w.l.o.g, a N b =0 .  Let in 3.4 x = ptr, and 

{I, : a < A } exemplify the full strong (A, ,L (2"°), (2"o)+)-¢p,r-bigness property for [ 

which are strongly finitary on P~. 

Now, in the proof of 3.13, use ptr instead of tr, 3.12(2) instead of 3.11(1), and 

3.5(2) instead of 3.5(1). 

§4. On the narrowness of Boolean algebras 

We prove in this section 

4.1. THEOREM. (1) Ira Boolean algebra is A-narrow (see below) then it has a 

dense subset of power < ~. 

(2) If B does not have a dense subset of power < )~ then B has an irredundant 

set of A pairwise incomparable elements. 

REMARK. (1) This completes a theorem of Baumgartner and Komjath which 

says the same for regular A; of course we use their ideas. 

(2) This answers a question from a preliminary version of [3]. 

4.2. DEFINmON. (1) A Boolean algebra B is )t-narrow if it has no A pairwise 

incomparable elements, i.e., if a~ ~ B for i < A then for some ifi  j < A, a~ -< aj ; 

we call a set of pairwise incompatible elements a pie. 

(2) A set I of elements of a Boolean algebra B is irredundant if for every 

b ~ I ,  b f~ ( I - {b} )~  (i.e., b is not in the subalgebra of B which l - { b }  

generates). 

4.3. OBSERVATION, Suppose that {b, : i < or} C_ B and for every i < a 

b,# Os, -'n(3x)[O< x E (bj : j < i ) , ^ x  <=b,], 

then for i < j  < or, b,;~ bj. Moreover {bj : j  < a} is irredundant. 

PROOF OF 4.3. Well known (see [3] for references). 
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Clearly b,;N b~ for i < j  < a. Now suppose i < a and b, E(b j  : j  < a , j #  i)B. 

Then  for some n < w, jo<j l  < • • • < j . - , ,  b~ E{bj, : l  < n}, iff:{jt : l  < n}, w.l.o.g. 

n is minimal,  and obviously n > 0 ,  j ,  i >  i. Let  Bo be the subalgebra of B 

genera ted  by {bj, : l < n - 1}. Clearly Bo is finite, hence atomic.  As b~ is in the 

subalgebra genera ted  by {Bo, bj._,}, for  every  a tom c of Bo, 

b, n c ff: Bo ~ b, n c E { c  n bj. ,, c - bi._,}. 

As b~ff Bo (by the minimality of n)  for  some a tom c of Bo, b~ n c ff Bo hence 

cAbs ,  c - b ~ 0  and also b ~ n c E { c n b i . , , c - b i . _ , } .  So b j . _ , n c ~ B o  and 

belongs to {c n b ,  c -  b~}. Now both  {c n b~ ,c -  b,} are not zero,  both  are in 

(BoU{b~})C {{b~ : a  < ] ,  1}) and one of them is _-< bj .... contradict ion to the 

choice of bj._,. 

PROOF OF TrtEOREM 4.1. Suppose 3. is minimum such that 4.1(2) fails, with B 

a counterexample .  Then  

(1) V0 ~ a E B 30 / b <_- a (B [ b has a dense subset of power  < 3.). 

For  suppose not,  and let a be a counterexample .  Clearly a is not  an a tom,  so 

choose disjoint non-zero  bl, b2_-< a. We can define inductively on i <  3. (for 

1 = 1 , 2 )  cl<=bt such that  

( . )  --n : tx(0 < x @ (c l: j < i)mb, ^ x  N= cl) 

(If we cannot  define c 1, this means that (c~:j < i)Brb, is a dense subset of B I bt, 

contradict ing the choice of a.) Hence  by (*) and 4.3 we have c IN c~ for i < j < 3., 

and {c l: j < 3. } is i r redundant .  Hence  {cl U ( b 2 -  c~): i < j} is an i r redundant  pie 

in B of size 3., contradict ing the choice of 3.. Thus  (1) holds. 

Le t  X be an infinite maximal set of pairwise disjoint e lements  of B such that  

Vb E X (B [ b has a dense subset of power  < 3.). By (1), X is a maximal set of 

pairwise disjoint e lements  of B. Now X is an i r redundant  pie, so IX  I < 3. by the 

choice of 3.. Fur the rmore ,  since B has no dense subset of power  < 3., clearly 

cf 3. < ] X 1. In particular,  3. is singular. Say 3. = 25<c~,/x~ with each/x~ < 3.. Now 

since B has no dense subset of power  < 3., clearly Va < cf3. V Y E [X] <~f" 

3b  ~ X - Y (B I b has no dense subset of power  </x~).  Hence  we can construct  

by induction (b~ : ~ < cf 3. ) by choosing b~ E X - {b~ :/3 < c~} so that B [ b~ has 

an i r redundant  pie D~ of power  /x~, using the minimali ty of 3.. But  then 

U,<~f,  D~ is an i r redundant  pie in B of power  A, contradict ion.  

4.4. CLAIM. I[ cf 3. > No then by ccc forcing P, we can introduce a B.A. of 

power 3. which has a pie A~ of power I~ for every tx < 3. but has no pie of power A 

(2 "o wilt be >3. ) .  
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REMARK. Similar forcing but  K-comple te  does the job  above  2 ~''. 

PROOF. L e t A ~ < A f o r a < c f A  = K , A  = Y.,<,A,. We  shall concent ra te  on the 

case A is limit, so we can assume A~ > 2~<,A~, Ao regular.  Let  Io = {i : U s > o  As --< 

i < A,}, so Io (a  < K) is a par t i t ion of K. 

Let  us define the part ial  o rder  P:  an e l emen t  is a pair  (B, w), B a finite B.A. 

genera ted  by a finite set {x~ : i E w}, w C_ A, such that:  

(1) in B, for  each i E w, x~ is not in the suba lgebra  genera ted  by {x, : j  E 

w,i~i}; 
(2) if i, j are in the same  interval,  then x~, x i are incomparab le .  

FACT A. P satisfies the A-ccc. 

PROOF. As in [15] §2: w.l.o.g, we have w = w~ N w:, (B, w ) <  (B~, w~); and 

there  is an i somorph ism f f rom B~ onto  B,, such that:  

( a )  {f(x~) : i E wj} = {xj : j  E w2} and i ~ w, ~ f(x~) = x~. 
( /3 )Le t  u ~ = { a : ( 3 i ~ w ~ )  i@L} .  If i E L ,  a E u ,  Au2 then f (x , )C{x, :  

j~xo}. 
It is enough  to p rove  they are compat ib le .  

Le t  B* be the free produc t  of B~, B2 over  B, w*= w, U w2; then easily 

(B *, w *) is the required uppe r  bound.  (Proof: As there,  check inside every  a tom 

of B.) 

FACTB. For  every  i < A ,  D ~ = { ( B , w ) : i E w } C P  is dense.  

FACT C. If G C P  is directed,  G M D ~  ~ for  every i < A, BC = 

U {B :(B, w ) E  G}, then B* is a B.A. genera ted  by { x , : i < A }  and A~ = 

{x~ : i ~ / ~ }  is a pie of power  A~. 

FACT D. If G _C P is generic,  then B c E V[G] has no pie of  power  A. 

PROOF. Suppose  (a~ : < A) is a P - n a m e  of such pie (a list with no repeti t ions) .  

The  case, A is regular ,  is just like the proof  in [15] that  the generic  B.A.  has no 

N~-pie. So let A be singular.  

For  each a < r ,  i E / ~  there  is p~ = (B~, w~) s.t. p~ II-a~ = a~ for  some  a, E B~. 

For  some  J~ C_/~, IJ~ ]=  A~, {w, : i  ~ J ~ }  is a A-system, ("),~jo w, = w ~ and for 

some  B ~, (B",w~)C_(B,,w~) for every iEJ~ and w~Nw, = w  ~ for  i # j E J ~ .  
Also we can assume w~ M ( U s < ~ A s )  c_ w ~, and for  i,/" E J~, B,, Bj are i somorphic  

over  B ~ with an i somorph ism taking a~ to aj satisfying (a ) ,  (/3) f rom Fact  A. 

Now K is regular  > 1~o, so we find an u n b o u n d e d  S C K, and (B, w), such that  the 

fol lowing holds: ~ E S  ~ (B,w)C_(B~,w ~) and a </3 ,  a E S ,  /3 E S  implies 

the following: w ~ M w ~ = w and w ~ C_ As and B ~, B s are i somorphic  over  B, 
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the isomorphism satisfies (a ) ,  (/3) and this isomorphism can be ex tended  to an 

isomorphism of B~, B~ for any i ~ J~, j ~ J~ s.t. a, cor respond to aj. 

Now if we choose a < /3  in S, i E J,, j E J~ and try to amalgamate  (B,, w,), 

(Bj, wj) such that a~, aj are comparable ,  we succeed.  Note  that  (2) of the 

definition of P has no effect, so we can proceed  as in [15]. 

§5. On endo-rigid indecomposable Bonnet-rigid B.A's 

5.1. DEFINITION. (1) For  a B.A. B, we call tO = tO(x,c,b) a p.s. (possible 

support)  over  B if /~ = (b,,, b , , . . . ,  b,) is a part i t ion of 1 (by e lements  of B) ,  

c =< bo, b ~ 0 , . . . , b , ~  0, and ~ is the formula 

(x ~ b,,= C)A /~ ( 0 <  x C~ b, < b,). 
, = 1  

The  p.s. is degenerate if n = 0. For  n = 1 we write b0 only ra ther  than (bo, b,). 

(2) For  p.s. tOt =~b'(x,c',f~'), l = 1 , 2 ,  we write ~0'< ~02 (tO ~- extends tO') if 

c ~ <= c 2, b~)- c '  < b0 - c 2, and for every  i, 1 =< i _<- n ~, there  is a j, 1 =<j = n 2, such 

that  b~ <- bl (where 6 ' =  ( b l : i <  n ' ) ,  of course)  (the first two condit ions are 

equivalent  to b~,_- < b~ and c '  = b~,N c2). 

(3) For  a p.s. tO and extensions tpl, -. ., ~O" of it, we say that ( tO ' , . . . ,  to") is a 

disjoint system of extensions of tO if bo = b~, (3 bE for i F  j, and there  do not exist i 

and l =  > 1 such that b~_- < U7  ~ bl,. 

5.2. DEFINITION. For  a 1-type 

B.A. 's  for  this section) and a B.A. 

p.s. tO = tO(x, c,/7) and every /3 < 

(i < / 3 )  of ~ and formulas O'(x) 

p (always quantifier  free in the language of 

B, we say that B absolutely omits p if for  every  

w there  is a disjoint system of extensions tO' 

f rom p such that  tO' ~- - 1 0 ' ( x )  for  all i </3.  

5.3. CLAIM. If B absolutely omits p, then B omits p. 

PROOF. Suppose c realizes p. Let  ~0 = to(x, c, 1); to is a degenera te  p.s. Hence  

with /3 = 1 we get tO o extending tO and O°(x)@p such that  tO"~---70°(x). But 

tO = tOo is the formula x = c, contradict ion.  

5.4. REMARK. (1) Defini t ion 5.2 is analogous to Rubin  [8], in which 

/3 = 1. In fact this case (/3 = 1) is the specification of Keisler 's  omit t ing type 

theorem for L(Q)  to atomle~s Boolean  algebras with the added axiom (Vx) 

[x > 0-~ Oy(y < x)] 
(2) We can do similar work for n-types,  but  no need arises. 

5.5. CLAIM. For atomless B, B absolutely omits p iff for every pair c <= bo and 



128 s. SHELAH Isr. J. Math. 

every/3 < to there exist c', b' (i < / 3 )  such that b ' O b j = bo for i ~ j, bo <= b ', c -< c', 

b o -  c <- b' - c', and (Vi </3)[x  n b '  = c I- ~ O ' (x) ]  for some O ' (x )  E p .  

PROOF. f f  Given a pair  c -< b0 and/3 < to, let q~ = ~0(x, c, bo) and by 5.2 let qjl 

(i < / 3 )  be a disjoint system of extensions of ~O and Oi(x )  (i < / 3 )  a system of 

formulas  f rom p such that ~h ~ ~ --1 O~(x) for  all i </3.  Say ~ = ~b~(x, c i, 6~). Now 

we use the following fact f rom the theory of B.A. 's :  

(*) If A is an atomless B.A. and (do," • ", d,,-l) (m E to) a system of non-zero  

e lements  of A, then there  exist pairwise disjoint non-zero  e o , " . ,  e,,_l such that  

e~=<d~ for all i < m .  

We hence get e lements  el (i </3,  1 < l <= n~) which are non-zero  and pairwise 

disjoint, with el < b l -  Uj<o b~ (i </3,  1 =< l <= n~). Now choose disjoint non-zero  

t,.~.o, t~,~ < e,. Then  the system ((c'  U UT'--t ,, = ' t,.,.o, bo U U7'--~ (t~.,.o U t,,,.1)) : i < /3)  is as 

desired - -  the checking is easy. 

~ .  Le t  ~0 = ~O(x,c , (bo, . . . ,b , ) )  b e a  p.s. and le t /3  < to .  Choose  c', b'  for  all 

i < / 3 + n  so that  b ' n b  j = b o  for  i ~ j ,  c=<c ' ,  b o - c = < b ' - c  ~ a~nd for  all 

i < /3  + n, x n b ~ = c ~ t- ---10~ for some O ~ E p .  By rearranging the c ~, b ~, we may 

assume that if 1 - < l = < n  a n d b ~ n b t P 0 f o r s o m e i < / 3 + n  t h e n b ~ n b ~ 0 f o r  

some i =>/3. Af ter  this rear rangement ,  (~0(x, c', (b ', b ~ -  b', • •. ,  b, - b ' ) ) :  i < / 3 )  is 

as desired (easily checked.)  

Now let B be a countable  atomless B.A.,  I a maximal  ideal of B, and 

D = B - / .  Let  P ~ = P o = { x n b = c : c < = b E 1 } .  We partially o rder  P~ by 

setting (x N b = c ) ~  (x n b '  = c') iff b < b',  c =< c '  and b n c '  = c. A subset G of 

Po is an ideal if it is d i rected upwards and 

( x N b = c ) - < _ ( x n b ' = c ' ) E G  f f  ( x n b = c ) E G .  

Let  G e n ( P o ) = { G : G  C Po, G an ideal}. A natural  topology on G e n ( P o )  is 

defined by the basic open  sets {G : (x N b = c)  ~ G}, for  c =< b E L This topol-  

ogy is not  Hausdorff ,  but  it satisfies the Baire category theorem:  a countable  

intersect ion of open  dense sets is dense.  For  almost all G means  for all G in a 

countable  intersect ion of open  dense sets. We  use P for  P~. 

Given  an ideal G in Po, B [ G ]  is the B.A. freely extending B by a new 

e lement  t, subject  to t O b = c for  (x n b = c ) ~  G. 

5.6. MAIN LEMMA. Let  B,  I, D be as above, and also suppose that p is a 1-type 

absolutely omitted by B. 

(1) For all b E L for almost all G there is a c such that (x n b = c) ~ G. 



Vol. 45, 1 9 8 3  UNCOUNTABLE BOOLEAN ALGEBRAS 129 

(2) For all b ~ L for almost all G there is a b' ~ b and c' < b' such that b' E L 

c' / O, and (x N b ' = c') ~ G ; similarly with c' = O. 

(3) For almost all G, B is dense in B [ G ] ;  B[G] is atomless, and t~  B. 

(4) For almost all G, B[G] absolutely omits p. 

REMARK. We shall frequently use properties which hold for almost all G. 

NOTATION. Let (a, x)' stand for a N x if t = 0 and a - x  if t = 1. 

PROOF OF 5.6. For c =<b E I  let Ub.c denote the basic open set {G:  

(x n b = c) ~ G}. 

(1) Given b E L  the set V = { G : 3 c < = b ( x n b = c ) C G }  is clearly open. 

It is dense, since if c ' -_<b 'EL  then ( x N b ' = c ' ) _ < - ( x n ( b U b ' ) = c ' )  and 

( x n b = b N c ' ) = < ( x n ( b U b ' ) = c ' ) , a n d s o i f ( x N ( b U b ' ) = c ' ) E G  we have 

G E U b ,  c, N V. 

(2) Given bff:I, the set V = { G : 3 b ' < = b 3 c ' < - _ c ( b ' E I  and c ' / b ' , O  and 

(x N b' = c ' ) E  G)} is clearly open. It is dense, since if co_- < boE I, then bN bo, 

and hence, since B is atomless, there is a b' _-< b N - b,, with 0 / b' E I. Choose 

crEB,  0 < c ' < b ' . T h e n  

( x N b ' = c ' ) = < ( x N ( b o U b ' ) = c 0 U c ' )  and 

(x N b,, = c,,) <- (x n (b,, U b') = c,, U c'), 

and so if (x N ( b o U b ' ) = c , , U c ' ) E G  then G E  u~,..,n v. For c ' = 0  we use 

x n (b,, u b ' )  = co. 

(3) Take G satisfying (1) and (2) (both clauses) for all b E 1  and all bff_L 

Without loss of generality we may take the non-zero elements of BIG] in four 

forms: t n b with b E L treated by (1); t n b with b ~ / ,  treated by (2), first 

clause; - t n b = b - ( t n b ) w i t h  b E I ,  treated by (1); - t N b  with bff:I 

treated by (2), second clauses: - t N b = > - t N b ' = b ' - ( t N b ' ) = b ' .  So we 

have proved " B  is dense in B[G]". It follows that B[G] is atomless. 

To show that for almost all G, t ~  B, let d E B;  it suffices to show that for 

almost all G, t / d .  Let V = { G : 3 c 3 b ( c < = b E I )  and c / b N d  and 

(x n b = c) E G}. Thus V is open, and clearly t ~  d for any G E V. To show that 

V is dense, let c '<=b'EL Choose b" with b ' < b " E L  Choose c* with 

c*<-<_b"-b ', c* / ( b " - b ' ) n d .  Then 

(x n b ' =  c ' )M(x  N b " =  c' U c*), 

and if (x n b " = c ' U c * ) E G  then G E  V. 

(4) First we claim: 
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5.6A. FACT. For  almost  all G, if c -< bo in B[G] then there are disjoint do, e,,, 
and ff E{0,1} and disjoint d, e and s c E{0,1} such that bo = d,,tO (e,,,t) ~, c = 

d U (e, t) e, and one of the following holds: 

(a) e = e~, E D and ~ = ~:, d -<_ d~, 

(b) e = O ,  d_-<do, and e o E D ,  

(c) e,, = 0, d, e =< d~,, and e E D, 

(d) c, b,, E B. 

For,  let (3 satisfy (1) for all b E I. For any d ~ B[(3] write 

d =eoU(e. N t ) U ( e 2 - t )  (eo, e~,e2EB) 

with eo, et, e2 pairwise disjoint. If e2 C / ,  then e, - t = e2 - (ez O t) E B ; if e2 ~ / ,  

then e~ N t = e~ n ( -  e~ N t) E B. Thus  each d E B[G] can be written in the form 

eoU (e~,ty.  So, write b, = d,,U (eo, t) ~ with d o n  eo= 0 and ff E{0,1},  and c = 

d U ( e , t )  e with d n e = 0  and ~:~{0,1}. Since f n t C B  and f - t =  

f - ( f N  t ) E B ,  when f E L  we may assume that e C D  if e / 0 ,  and eoED if 

eo ~ 0. If e = e,, = 0 we are in case (d). Assume eo = 0, e ~ 0. Then ,  as (c =< bo) 

(e, t) ~ =< do so c = d U (e N do, t) ~ and we are in case (d) if e N do E L otherwise 

in case (c). Assume e = 0, eo ~ 0. Then  bo = do U (eo N d) U (eo - d, t) ~, giving (d) 

or  (b). Finally, suppose e, eo ~ 0. If ~ = 0 and s c = 1, then w.l.o.g, e = eo hence 

c N e, bo N e are disjoint and non-zero,  contradict ing c = bo; similarly if ~ = 1 

and s c = 0. So, assume ~ = s c, so we can get (a). Thus 5.6A holds. 

Now to prove 5.6(4) we apply 5.5. Let  G be such that (1), (2), (3), 5 .6A hold. 

Suppose c =< bo in B[G] and /3 < o9. Write  c and bo as in 5.6A. 

Case (a). e = e o E D  and ~=~:.  Let  ( x n b * = c * ) E P ;  and w.l.o.g, e =  

-b*; we shall find a bigger e lement  of P such that for every G to which it 

belongs there exist c ~, b '  (i =</3) as desired in 5.5. Note  that d U (e, nb* ,  c*) ~ < 
do U (eo n b*, c *)~ E L Applying  5.5 to this pair in B, we get c ~, b~, (i =</3) such 

that b ~ n b~ = d,, U (eo N b *, c *)~ for i ~ j, d U (eo N b *, c *)~ ~ c '  =< b ~, d,, - d < 

b~o-c ', and Vi _-</3, x N b'o=c ~ F--ntg ' (x)  for some tg'(x)Ep. Now 

b~onbg=doU(eonb*,c*)CEI for i ~  j, 

so there is at most  one i =</3 such that b~off: L So w.l.o.g. Vi < /3  (b~,E I).  Let  

b** = b* U U , < ~ b ~ , a n d i f  ff = 0 l e t  c** = c* U U , < o ( c  i - b *), while if ff = 1 let 

c * * = c * U  U,<o(b~o-c'-b*).  Thus ( x n b * = c * ) < = ( x n b * * = c * * ) E P .  
Now suppose (x n b * *  = c * ) E  G. Set 

b~=b~oU(e,t)~, c ' l=c~U(e,t)  ~ for i < / 3 ;  
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we claim that the demand  in 5.5 holds for these elements  in B[G].  For  i ~  j we 

have 

b~l n b{ = (boA b~)u  (e , t )  ~ = doU (e N b*,c*)~ U (e , t )  c 

= doU (e , t )  ~ = b0 

since t n b * = c *. Clearly c =< c ~ =< b ~ and bo - c < b ~ - c ~. Finally, suppose that  

x n b 11 = c ~. Then  

x n b ~ n  - ( e , t )  ~ = x  Nb~ln  - ( e , t )  ~ by b~l's definition 

= C  i 1 N - ( e ,  t )  ~ 

i =c  n - ( e , t )  ~ 

by the hypothesis  on x 

i 'S by c 1 definition. 

' =< x. So to show x N b[j c '  and hence  finish case (a) it suffices to Also (e, t) c =< c l = 

show b~oN(e,t) ~ = c '  n ( e , t )  ~. Assume ff = 0 .  Now if i ~ j ,  then 

b ~ n e A t N ( c J - b * ) = b ~ o N b J o N e N t n ( c i - b  *) as b~onc j = b j o n c  j 

= (doU (e N c * ) ) n  e n t n ( c  j - b * )  = 0  

since do =< b* and t N b* = c*. Hence  

b ~ o n e n t = b ~ o n e N t O b * *  as t n b * * = c * *  

= b~on e N t n c  ** 

= b i n  e n t n ( c *  U ( c ' - b * ) )  

by the previous computa t ion  

< = e n t O c  ~ since e n c * < = c  i 

<=b~oNeNt, a s c ' n e = b ~ o n e  a s e = - b *  

as desired. On  the o ther  hand,  if ff = 1 then 

(bio-C j - b * ) n ( e  - t ) -  < c** n ( e - t ) =  < b** N t n ( e  - t ) = O ,  

and now 

b~ n (e - t) 

= b ' o n ( e - t ) n b * *  as b'o<-_b ** 

= b ~ o n ( e - t ) N ( b * * - c  **) as t n b * * = c * *  

= b~ n (e - t) N - c* n n ( -  b~ u c i u b*)  by the previous computa t ion  
i<t3 
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= b ~ n ( e - t ) N ( - t U - b * ) N ( b * U  n (-b[~UcJ))  as t n b * = c *  
j<t3 

< = ( b ~ o U ( e - t ) n b * ) U ( b ~ n ( e - t ) N  n ( - b / ~ U c ' ) )  
i<¢ 

_ - < ( b o N ( e - t ) n ( b * - c * ) ) U ( b ~ o n ( e - t ) n ( - b ' o U c ~ ) )  

< = ( e - t ) n c ' < - _ b ~ o n ( e - t )  as desired. 

Case (b). e = 0, d -< do, and eo ~ D. We find c',  b~o bo(i <=/3) as in Case (a), 

for  the pair d<=doU(e N b * , c * )  ~ and define b** as there.  This time let 

c * * = c  * , i f  f f = 0 ,  and c * * = c * U  U , < ~ ( b ~ -  b*) if ~ = l .  Then  

(x N b* = c*) -<- (x N b** = c * * ) E P .  

Suppose (x N b ** = c **) E G. Set b 11 = b;  tO (e, t) ~ ; we claim that  c i, b'~ (i < / 3 )  

are as desired in 5.5 for  B[G]. This is p roved  much as in Case (a). 

Case (c). eo=O, e<-do, and e C D .  We assume e = b * ,  and use d = c = <  

do - e to find c ~, b ;  E I as in Case (a). Then  define b **, c ** exactly as in Case (a). 

This t ime we use b'l = b~ U e and c'1 = c i U (e, t) ~. The details are similar to those 

in Case (a). 

Case (d). c, co E B. This is trivial, since B strongly omits p. 

5.7. CLAIM. Let B be a countable atomless B.A. ,  f : B ~ B an endomorphism, 

F a countable set of 1-types which B absolutely omits, I = {x : x = y U z , / ( y )  = 0, 

Vv =< z ( f ( v ) =  v)}. Thus I is an ideal Assume that B / I  is infinite. 

Then there is B * D B, t @ B* - B, such that B* is countable atomless and 

(1) B * absolutely omits every q E F (B dense in B *), 

(2) B* absolutely omits p = {x O f ( a )  = / ( c ) ;  a, c E B, t n a = c}. 

(Thus in no B** D B* which omits p can f be extended to an endomorphism; 

otherwise f ( t )  will realize p.) 

PROOF. There  is a maximal  ideal J of B which contains every a such that  a / I 

is zero or  a finite union of atoms. Let  D be the dual filter. Note  that  if a ~ B - J 

then there are b, c such that a = b U c, b n c = 0, b E B - J, and c ~ B - / .  We 

can repeat  this process on b, noting that  q n c2 = 0 f f  f ( c l ) n  f ( c 2 ) =  0. This 

means  that we may assume that  f ( c ) E  J. 

Applying  L e m m a  5.6 to each q E F, we see that for almost  all G, (1) holds. 

Now we show that almost  every G satisfies (2). Let  G satisfy (1), (2), (3), (4) in 

5.6 and its proof .  Suppose c <- bo in B[G] and/3  < o~. Write  c and b0 as in Fact 
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5.6A. Suppose  (x N b* = c *) E P ;  we want  to find x N b ** = c ** as in the  p roof  

of 5.6, su i tab le  for  p of (2). Le t  B " =  (d, do, e, eo, c*,  b*)B. W e  may  assume that  

u =< b* w h e n e v e r  u E B ° n J and  e = - b* or  e = 0; s imilar ly  for  eo. Now using 

the r e m a r k  in the  first p a r a g r a p h  we can def ine  by induct ion  on n < o2 e l e m e n t s  

a o , . . . , a , , ' "  < = - b *  such that  a~ E J - I ,  f ( a t ) E J ,  and a ,  d is jo int  f rom b * U  

aoU f(ao) U ' "  U a,_, U f ( a ,  ~). As in [14] (or see M o n k  [7], l e m m a  8), we can 

assume a, ~ f ( a , )  ( replac ing  a ,  by some a ;, < a , ) .  Now by R a m s e y ' s  t h e o r e m  we 

can assume 

(1) the  t ru th  values  of [ ( a . ) n - a . n - b * N a , . = 0 ,  f ( a o ) N - a ,  n x = O ,  

/ ( a . ) n x = 0  (for each  x @ B  °) d e p e n d  only  on w he the r  n < m ,  n = m ,  or  

n > m ,  

(2) e i ther  (A)  V n ( f ( a . ) N  - a .  =< b*) or  (B) V n ( f ( a . ) N  - a. N - b* ~ 0). 

By (1) and  poss ib ly  rep lac ing  (a .  : n < o2) by (a_..+2 : n < o2) we get  

(3) if [ ( a . )  - a .  - x / 0, x E B", k < o2 then  f ( a . )  - a.  - x - U , .  <k a,. # O. 

W e  cons ide r  now severa l  cases,  def ining b**, c**,  b[~, c ~ (i < / 3 )  in each  case 

so that  if (x n b ** = c **) E G, then  (bi~, c ~) exempl i fy  5.5's c r i te r ion  in B [ G] .  

Fo r  p rov ing  the exis tence  of a su i tab le  O ~, we let  i < /3 ,  B I G ]  C B ~, x E B ' ,  

x n b~j = c '  and  assume x rea l izes  p and we shall  get  a con t rad ic t ion .  

F o r  no ta t iona l  s impl ic i ty  assume ~ = 0. Le t  

(i) b** = b* U U , < ~ ( a ,  u f (a,)) ,  

(i i)  c ** = c * U U , < ~  a2. 

and  in B [ G ]  let: 

(iii) b~ = bo U f (a2,)  U f(a2,+,). 

(iv) c' = c. 

Case A .  f ( a j ) -  ai <= d (for some  j )  

So this ho lds  for every  j. 

Now t n a:~.~ = 0 hence  (as x real izes  P )  x n f(a2~.~) = O, so 

0 = x N f(a2,+,) = x N (f(a2,+,) N b;)  = (x N b;)  N f(a2,+,) 

= c '  N f(a2,+,) = c N f(a2,+,) >= c n (f(a2i+l) - a2,+,). 

S o  c n ( f ( a 2 i + l )  - a2i+l)  = 0, and  c _--> d and  d >= f(a2i+l) - f(a2,+,) (a hypo thes i s  of 

the  case A) .  H e n c e  f(a2,+,) - a2,+, = 0. A con t rad ic t ion  to the choice of the  a .  's. 

Case B. F o r  no j, f ( aj ) - aj <~ d 

Clear ly  a2~ = t n a2, hence  
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f (a2 , )  = x n f (a~, )  = x n (f(a~,)  n bl,) = (x n b~) N f(a2,) 

- = c '  nf (a2 , )= c n / ( a 2 , ) ,  

so f ( a 2 , ) _  -< c. But  by the hypothes is  of the case f ( a 2 ~ ) - d ~  O. R e m e m b e r  that  

c = d U ( e , t )  ~, so necessari ly e ~ 0  hence  e = - b * ,  and by the choice of c** 

(which influence c through t ) f ( a a i ) - b * - U , . < ~ a 2 , ,  = 0 .  By ( 3 ) t h i s  implies 

f(a2~)-a2,<=b*, and as f(a2,)<=c clearly f (a2~)-a2 ,<=b*Nc.  But as c =  

d U (e, t);, e = - b*,  this implies f (a2~)-  az~ <-_ b* N c = d, contradic t ion.  

This comple tes  the proof  of 5.7. 

5.8. CLAIM. Suppose B is a countable atomless B.A.  absolutely omitting every 

p E F, where I F I <-- No. Let I be a maximal ideal of B generated by Io U I~, where 

Io, 11 are non-principal ideals and Io n 11 = {0}. 

Then there is a countable atomless extension B '  of B and a t E B ~ - B such 

that: 

(1) B 1 absolutely omits every p EF .  

(2) B~ absolutely omits p l = { x  N b  = c  :b, c EIo,  b n t  = c ;  or b @L,  c =O} 

and p 2 = { x U b = c  :b, CEIo,  b - t = c ;  or b E L ,  c = 0 } .  

REMARK. If B 2 is an extens ion  of B ~ omit t ing  pl and p2, then there  is no 

max imal  ideal 11 of B 2 and non-pr incipal  ideals I l, I I  such that  I 1 U 111 genera tes  

11, I~on I I  ={0}, and I ~ n  B = I~ for  l = 0,1.  In fact, o therwise  t or  - t is in I 1 

and  hence  has the fo rm to U t~ with t~ ~ I] for  l = 0, 1; but  then  to realizes pl or  p2. 

PROOF OF 5.8. Le t  G satisfy (1), (2), (3), Fact  5.6A in 5.6 and its proof ,  and 

suppose  (x M b* = c * ) ~  Pr. Le t  c <-- bo in B [ G ] ,  /3 < o~; write c and  bo as in 

F~ict 5.6A. W e  want  to find x n b * * =  c** E P  extending  x n b* = c* so that  

(x n b** = c**)E  G ~ B[G] satisfies the desired condi t ion (2) for  p~, c, b0; 

similarly [or  p2. In  some  cases pl and p2 can be  t rea ted  s imul taneously .  Le t  B ° be  

as in the p roof  of 5.7; again we m a y  assume that  u _-< b* wheneve r  u E B ° A  I 

and [ e ~ O ~ e = - b * ] ,  [ e o ~ O ~ e o = - b * ] .  For  each u E I  write u =  

g ( u ) U h ( u )  with g ( u ) E I o  and h ( u ) E I 1 .  Now choose ao ," ' , a2o  1 disjoint  

f rom b* such that  a2i+~ ~ I~, all a i ' s  non-zero  and pairwise disjoint.  This is 

possible  since Io and 11 are non-principal .  We  consider  several  cases defining 

b**,  c**,  b~, c ~ (i < 13) so that  if x N b** = c** G G, then c~b~o (i </3)  exempl i fy  

5.5's cr i ter ion in BIG].  For  proving  the exis tence of O'  let (for a specific i < / 3 )  

B [ G ] C B I ,  x E B I ,  x N  , -  ' 
_ b0 - c ,  a ssume x realizes pl (or p2) and we shall get  a 

contradict ion.  
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Case 1. e = eo ~ D. Let  

b * * = b * U  U a ,  c * * = c * U  U a2,+~, 
i < 2 / 3  i < ~ 3  

b~o=boUa2~ U a2i+l, C ~ - -  C U a2 /+1 .  

i - -  i Suppose  x N bo - c ; we c la im that  x N h(b **) # 0, con t r ad i c t i on  for bo th  pl  and  

p2. (Note  that  do--- b*,  so a2~+1 n d o = 0  and  hence  b 0 -  c ~ b ~ -  c ( )  In  fact,  

a2i+l-< c ~ -  -< x, so a2i+l =< x N h(b**), as des i red .  W h e n  we refer  to Case  1, we 

shall  m e a n  with ff = 1. 

Case 2. eo=O,d,e<=do, e E D , ~ = O .  Le tb** , c**beas inCase l ,  b~o=bo, 

c ' = c. Since - e =< b*,  we have  a ,  =< e for  all n. A g a i n  suppose  x n b~ = c~; we 

show x n h(b **) ~ O. W e  have  t n h(b **) = h(c**) so a~ <- h(c**) <= t, hence  

a~<=e N t<- x; so a,<=x, and a~<=b** N a l E L  hence a~<-<_h(b**), so O<a~= < 

x n h(b**) as des i red .  

Case 3. e o = 0 ,  d, e<-_do, e E D ,  ~ = 1 .  Le t  b** be  as in Case  1, c * * =  

c* U U,<~a2, ,  b ~ =  bo, c '  = c. 

Suppose  x n b ~ =  c' .  Now t N h(b**) = h(c**) = h (c* ) ,  so al  =< e n - t ~ x  

and  x n h(b**)~ O. 

Case 4. e = e o = 0  and  c @ / ,  b o E B - I .  Then  c, -bo_ -<b* ,  so a , _ - < b o - c  

for  all n. Le t  b**,  c**,  b~, c ~ be as in Case  3. If x N b~ = c '  and  x N g(b**)= 

g(c**), then  a2, _-< g(c**)<= x and a2, _-< bo, so a2~ -< x N b~ = c ~, con t rad ic t ion ;  

this t akes  care  of p~. F o r  p2, let  b**,  c**,  b~, c ~ be as in Case  2. No te  tha t  

g ( b * * ) n  - t  = g(b**)-g(c**).  If g(b**)nx  = g(b**)-g(c**)  and  x n b ~ =  

c ~ then  a2~ <= g(b**)-g(c**)<= x and a2~ -< bo, so a2, =< x n b ~ =  c ~, con t rad ic -  

t ion.  

Case 5. e = e o = 0 a n d b o ,  c ~ B - L T h e n - c _ - < b * , s o a . = e f o r a i l n .  F o r  

p , ,  let  b**,  c**,  b~, c '  be as in Case  2. If x n b~ = c ~ and  x n g(b**) = g(e**) ,  

then  a2~ n g(e**)= 0 but  a: ,  -< x n g(b**), con t rad ic t ion .  F o r  p2, let  b**,  c**,  

b~o,c~beasinCase3;ifxN ~ c ~ bo = andxng(b**)=g(b**) -g (c** ) ( l i k eCase  

4), then  a2~ = c so a~, <-_ x N g(b**) and a:~ <_-g(c**), con t rad ic t ion .  

Case 6. e = e o = 0 a n d  bo, c E L T r i v i a l .  

Case 7. e = 0 ,  d<=do, eoED, i f = 0 .  Le t  b**,  b~, c ~ be  as in Case  1, 

c * * = c * .  T h e n  for  any  i < 2 / 3 ,  t O a ~ = t N a ~ n b * * = a i O c * * = 0 .  H e n c e  

b o -  c _-< b ~ -  c ~ and  we can finish as in Case  1. 
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Case 8. e = 0 ,  d<-_do, e o E D ,  f f = l .  Let  b**, b~, c ~ be as in Case 1, 

c** -- c* U U~<:~a~. Then  a~_-<t for all i < 2 / 3 ,  so b 0 - c _ - < b ~ - c  ~ and we can 

finish as in Case 1. 

5.9. CLAIM. Let B, F be as in 5.8. Suppose d * E  B, c ~  d * ~  1, B~ is a 

subalgebra of B [ - d*, and h is a homomorphism from B1 onto B2 = B [ d*. 

Then there exist a countable atomless extension B j of B and t E B ~ - B with 

t <= d* such that: 

(1) B'  absolutely omits every p ~ F, 

(2) B'  absolutely omits p = {~(x)  : ~O is quantifier-free with parameters from B, 

and {h(a )  : a E B~, B ~ --1 ~0[a]} has a tmos tone  member} U {x (3 a ~  0:  a ~ B~, 

O< h ( a ) ~  t }U{x  f-q a ~  a : a E B~, O< h ( a ) < = d * - t } .  

REMARK. Thus  there do not  exist B", B( ,  h" with B" extending B ' ,  

( B , B ~ , h , d * ) < ( B " , B T ,  h" ,d*) ,  and B" omitt ing p. Otherwise,  there is an 

x ~ B'~' such that h(x)  = t, hence x realizes p. This is clear for the second and 

third parts of p. For  the first part,  suppose tp is as indicated, but  B " ~  ~ ~0[x]. 

Thus  B " ~ 3 v ( ~ ( V ) A v ~ B ' ( ) ,  so B ~ 3 v ( ~ t ~ ( V ) A v @ B  O. Say y ~ B 1 ,  

B ~ -'7 ~(y) .  Then  B ~ V v ( v  E B~A --1 4J(v)--~ h(v)  = h(y)),  so this holds in B' .  

Hence  t = h"(x) = h ( y )  ~ B, contradict ion to t E B '  - B. 

PROOF OF 5.9. Let  I be a maximal ideal in B such that - d* E / .  We want  to 

show that for almost  all G, if (x ¢-3 - d* = 0) ~ G, then the conclusion of 5.9 

holds for B l = B[G].  To this end, let G satisfy the condit ions (1)-(3), of 5.6 and 

5.6A. Let  (x 71 b* = c * ) ~  P be arbitrary;  let bo, c be as in 5.6A. Let /3  < w. Now 

we want  to find an extension x I"q b * * =  c** E P  of it such that for any G as 

above,  if (x fq b** = c**) E G and (x fq - d* = 0) C G then the conclusion of 

5.6 holds. We may assume that (x 71 - d* = 0) _-< (x (3 b* = c*). Thus - d* =< b* 

and - d * f q c * = 0 .  

(1) We may assume that bo, c E B and d*<_-b , , -c .  

For,  note that  ( x D d * = 0 )  E P .  H e n c e i f  c 7 1 d * ~ 0 w e c a n t a k e  b * * = b * ,  

c * * - - c * ,  bi~=bo=bo, c~=c.  So, assume c D d * = 0 .  If d * D - b o ~ 0 ,  let 

y ~ - < _ d * D - b 0  for i < / 3  be pairwise disjoint. Then  let b * * = b * ,  c * * = c * ,  

b~ = boU y, c ~ = c U y~. If x N b~ = c ~, then y~ = < x 71 d*,  as desired. Thus  we may 

assume that d* =< bo. Let  bo = do U (e D t) ~, as - d *  E I w . l . o . g ,  e fq - d *  = 0, 

i.e. e =< d*,  hence (as d* =< bo) bo=  boU d* = boU ((e f3 t) ~ U d * ) =  boU d* C B .  

So, b o E B .  If c = d U ( e 7 1 t ) ,  then c D d * ~ 0  unless e M t = 0 .  If c =  

d U ( e 7 1 - t ) ,  note  e f q - t = e 7 1 - d * = t D - d *  (since c = < - d * ) s o  c E B .  

Thus  (1) holds. 
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Now let 4J(x, c, b,,) be the formula x n bo = c. Let 

A = {a E B," B ~ tp(a, c, b0)}. 

If h has a constant value for all a E A, then --1 0(x, c, b0) E p ; we can then take 

b * * = b  *, c * * = c  *, bi,=bo, c~=c. So assume there are a~, a 2 E A  with 

h(a, ) /h(a2) .  W.l.o.g. h(al);~h(a~). Let a = a , - a 2 ;  thus h ( a ) / O ,  a EBb, 
and a n bo =0 .  Now since B i d *  is atomless, there are pairwise disjoint 

non-zero y~ _-< h(a) (l < ~o). W.l.o.g. one of the following conditions holds: 

(i) V/(y~ =< c*), 

( i i )  V l ( y ,  _-< b *  - c *), 

(iii) Vl(y~ N b* = 0). 
Next, we can find zi ~ B~, such that h(z~) = yt and the z, (l < w) are pairwise 

disjoint. Now we split into cases according to which of (i), (ii), (iii) holds. 

Case (i). Let b * * = b * ,  c * * = c * ,  c '=c ,  b~,=boUz,, O ' = ( x N z ~ / O )  

( i< /3 ) .  Then O ~ E p  by the second part of p. Since O<h(z~)<=c*<-t, and 

x n b i ~ = c  ~k--70 ~ since z,=<b~,-c ~. 

Case (ii). Let b * * = b * ,  c * * = c * ,  c ' = c U z , ,  b;=boUz~, 0 ~= 
(x N z ~ / z , )  (i </3),  Then O ~ E p  by the third part of p, since 0 <  h(z,)<= 
b * - c * ;  thus h(z~)<= d* (by definition of h), and h(z~)<-_ - t since t n b* = c* 

Further x n b i , = c  ~FxNz~=z~ .  

Case (iii). Let b * * : b * u U ~ < e y l ,  c * * = c  * , c  ~=cUz~, b;=boUz~, 0 ' =  
(x n z~/z~) (i </3).  Thus t n h(z~) = 0  since t N b * * =  c*, so 0 ~ Ep ,  and we 

finish as in Case (ii). 

So we have proved 5.9. 

Now we recall some definitions. B is endo-rigid if for every endomorphism f 

of B, if I ={x : x = y U z, f ( y ) =  O, Vv <= z( f (v)  = v)}, then B / I  is finite. B is 

indecomposable if there do not exist non-principal ideals Io, 11 of B with 

Io n L = {0} such that Io U L generates a maximal ideal. B is Bonnet-rigid if 

whenever f and g are homomorphisms from B to another B.A. B, with f 

one-to-one and g onto, then f = g. Every endo-rigid B.A. and every Bonnet- 

rigid are mono-rigid, i.e., have no non-trivial one-to-one endomorphisms. 

5.10. CLAIM. Suppose B is mono-rigid but not Bonnet-rigid. Then there exist 

d*, B,, h such that d* E B, O ~ d* ~ 1, B~ is a subalgebra orb  [ -  d*, and h is a 
homomorphism of B, onto B [ d*. 
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PROOF. Let f and g be homomorphisms of B to a B.A. B* with f one-to-one, 

g onto, but f f i  g. If g is one-one, then g-l of is the identity, so f =g ,  

contradiction. Thus g is not one-one. Say d* f i0 ,  g ( d * ) =  0. ~Fhus 0 f i  d * / 1 .  

For any b E B  we have g ( b n - d * ) = g ( b ) ,  so k = g [ ( B r - d * )  is a 

homomorphism from B I - d *  onto B*. Let B~ = k ~f[B]: thus B~ is a sub- 

algebra of B [ - d * .  For any b C B l  let h ( b ) = f  ~k(b)Nd*. Then h is a 

homomorphism of B1 onto B r d* 

5.11. THEOREM. (~,,) .  There is an endo-rigid, Bonnet-rigid, indecomposable 
B.A. of power N,. 

PROOF. We construct by induction on i a B.A. B~ and a set F~ such that 

(a) Bi is countable and atomless, and (B~ : i < N~) is strictly increasing and 

continuous. 

(b) F~ is a countable set of quantifier-free 1-types over B~, and (F~ : i < N1) is 

increasing and continuous. 

(c) B~ absolutely omits each p E F,  

First, let (A.  : a  < to1) be a ©N,-sequence. Write tot = AoU At t_J A2, with A~ 

pairwise disjoint and of power tot. Let g, map to~ × tol one-one onto A~ for all 

i < 3 .  

Now we let Bo be countable atomless, Fo = 0. For 6 < to1 limit, let B~ = 

I..J,<~ B,  F8 = I.-J~<sF~. Now we define Bi+~ and F,+t. In all cases, including Bo, we 

can take the universe of B~ to be E tot. 

Case 1. 0~A,_CAo,  B, =i (i.e. B 's  universe is i) gol[A,]=f is an en- 

domorphism of B,, and the ideal I of 5.7 is such that B / I is infinite. We apply 5.7 

to get Bi+l and Fi+l = Fi LJ {p}. 

Case 2. O/A~C_A~, B~=i, and Io={a<i:g~(a,O)EA~} and I ~ = { a <  

i : g l ( a ,  1 )E  A~} satisfy the conditions of 5.8. We apply 5.8 to get B~+~, and 

F,+l = Fi I.J {Pb p2}. 

Case 3. O~ A~ C_ A2, B~ = i, and for some d * E  B, h = g~[A~] satisfies the 

conditions of 5.9. We apply 5.9 to get B~+t, and F~+~ = F, U {p}. 

Case 4. Otherwise, we use 5.6 to get B,+t, and F~+~ = F,. 

Set B = U~<~, B,  It is routine to check the desired conditions. For illustration, 

we show that B is Bonnet-rigid. Suppose not, while it is known that B is 

endo-rigid and hence mono-rigid. Then w e g e t  d*, B 1 and h as in 5.10. Let  

C ={i  < tot : i  = B~,h[B l nB,]= B, [d*,d* EB,,g2[i x i] = i, and 

(B, B~N B,, h t B 1 n  Bi, d * ) <  (B,B t, h, d*)}. 
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Then C is closed unbounded,  so choose i C C such that g2[f] f q i =  A ,  Then 

g~[A~] = h r B ~ 71B~ satisfies the conditions of 5.9, and 0 ¢ A~ C_ A:. Hence B~+~ 

and F~+~ are obtained as in 5.9. This contradicts the remark following 5.9. 

5.12. THEOREM. It is consistent with ZFC + 2 ~° > 1,l~ that there is an endo-rigid 

Bonnet-rigid indecomposable B.A. of power ~ .  

PROOF. Let P = {(B, F) : B countable atomless B.A. whose set of elements is 

some 6 < o91, F a countable set of 1-types over B which B absolutely omit} 

order: the natural one 

Q = the product of 2 ~ Sacks real with countable support. 

(We start with V = L.) Force with P x Q, the generic set of P give naturally a 

B.A. of power N~; it is as required. 

The point is that for Q, player II has a winning strategy in the following game 

Gm (q) (q E O arbitrary). 

In the n th  move, player I chose a Q-name a ,  of an ordinal and player II 

chooses q,+~, q, < q,+~, and a finite set A,, I A, I < n such that q,+~ U-oa, E A,. 

In the end of the play, player II wins if {q, : m < o9} has an upper bound. 

§6. Additions on B.A. 

6.1. DiscussioN. K~r(n) is defined like Kptr, but with n-tuples instead of 

pairs: 

4,tr(,>((x,, y,), (x~, y~) , . . . ,  (x,, y.)) 

: 1=I ~ y/ : ylAP)¢(yl)^ V [ A/ yl[O/ :Xl[OIAyl(Ol):(Xl(Ol),'*',Xn(Ol))]. 

K~<~) is defined like K~(,), but in level n we get n tuples 

I~tr(m)((Xl, y , , ' "  "9 )) = A y| 
l 

= y,^p.(y , )^ v (  ,=,?' y, r n -- x, r n ^ y , ( n ) -  <x,(n)," • ",x.(n)>).  

All the theorems from §2 on ptr work for t r (n) ,  tr(og). 

We define B,,(~)(I) for c~-<_ o9, I E K~<°> as the Boolean algebra generated 

freely by x~ (rt ~ I )  except that if rt E I, /('0) = o9, ~ ( l ) =  (~o,""-,o~k-~), then 
k--1 

X~ < X(~u)^(,~o) , X,~ f"l [ ~ m = l  X(~)t)^(,,m) = 0. 

Also, the theorems from §3 on ptr hold for t r (n) ,  tr(o9). But in addition 
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6.2. CLAIM. I f  a >-_ 3, I E K~r(~), then B = B,r,~(I) satisfies the strong count- 

able chain condition. 

PROOF. Let  a~ ~ 0 (a  < w~) be lgl pairwise disjoint e lements ,  let a~ = ~-~ (2~) ,  

z~ a Boolean  term, ~ a finite sequence f rom I, w.l.o.g. ~-~ = z ,  and ~ = 

( -q~ , . . . ,  T/ . . . .  ) wi thout  repet i t ion,  and 

ao=Nx.o.,n n (1-x.~o.,). 
I<k(O) k(O)~l<k 

So there  is n ( a ) < t o  such that l ( ~ . , ) < t o  ~ 101o.,)<n(a),  and l(T/~,m))= 

l (7/~.m)) = to, l (1) ~ l (2) implies T/~.~t~) r n ( a )  ~ rib.m) f n (a ) .  

W.l.o.g. if m < n ( a ) ,  I(W~,,) = to, ~/~.,(m) -- (yo, y~,""" ) then (7/~., I m)^(yj)  E 

{~/~.o, 7/~.~, • • • } (for we change fi~ but  not  n(a) ,  and then uniformize z~ again). 

Now w.l.o.g, n ( a ) =  n* for  every  a,  and l ( ~ , m ) =  l,, and (by the theorem on 

A-systems) for  every  m < k, there  is a,, -< n * such that T/~.,, i a,, is constant ,  but  

e i ther  (rt , .m(a~): a < too is an indiscernible sequence of tuples (in ( h , < ) )  or 

a,,  = n*.  We can also assume that i~, i2 < k, a, fl < to~, l -<_ n * and ~/~,,, I l = ~.,~ [ l 

implies ~/~.,, I l = ~/~.~ I I. 

Now we define a funct ion h from {x~ : ~ /E  I} to the trivial B.A. Bo = {0, 1}. We 

let h(x.o.,) = 1 for  a = 0 , 1 ,  and l < k(0), we let h ( x , . . , ) = 0  if a = 0 , 1  and 

l _-> k(0);  if m < k(0), l(~t~.m) -- to, a < 2, ~/~.m(i) ---- ( ao , " " " )  then h(x(no.~r,r~o>) = 

1. Otherwise  h ( x n ) = 0 .  It is easy to see that h can be ex tended  to a 

homomorph i sm  h '  of B,~(~)(I) into Bo (as it respects the relations which B,r(~)(I) 

satisfies) and h'(ao) = h ' ( a ~ ) =  1. Hence  a o r t a e S 0 .  This holds for  any a, 

fl  < to]. 

6.3. THEOREM. (1) In the theorems of §2 (in particular 2.2, 2.6, 2.8), for 

3 <= a <= to we can replace K~,~, 6~,~, by K~(~), 6~(~) and get the same conclusions. 

(2) In the theorems of §3 for 3 ~= a <= to we can replace K ~ ,  6 ~  by K~o), 6~(~) 

and get improved conclusions. Mainly, in conclusion 3.16, we have to assume only 

"the full strong (A, A, ~ ,  ~)-6,~(~rbigness for f which are strongly finitary on P~ ", 

and in 3.16(1) we get the tt~-chain condition and 3.16(1), (2), (3) holds. 

PROOF. Easy.  

6.4. THEOREM. Suppose K~ has the full (A, A, tto, t~o)-6,~-bigness property. 

Then : 

(1) There is a Boolean algebra B of cardinality A, with no non-trivial 

endomorphism onto itself; moreover, it is Bonnet-rigid (see below). 

(2) I f  a, b ~ B are disjoint, non-zero, then there is no embedding of B f a into 

any homomorphic image of B f b. 
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(3) We can find such B, ( i < 2  ~) (as in (1) and (2)) so that for i # j  and 

non-zero a E B~, b E Bj there is no embedding of B~ r a into any homomorphic 

image o[ B~ [ b. 

REMARK. W e  shall use B.A.  built  f rom B t r r ( / ) ,  hence  has no long chains. We  

can go in the inverse direct ion using B.A.  built f rom orders ,  using, e.g., Or  ( I )  is 

the l inear o rder  with e lements  {x., y,  : 7 / E  I} such that:  

(1) l('r/) < to implies x.  < y., for  a </3 ,  y~^<~> < x,^<~> and X.r. < .x .  < y.  < Y.r. 

for  n < l(T/). 

(2) 1(~) = to implies x~t. < x .  = y~ < Y.r, for  n < to. 

In such cases we need a paral lel  to L e m m a  6.9, which is true.  

6.5. DEFINITION. A Boo lean  a lgebra  B is called Bonnet - r ig id  if there  is no 

Boo lean  a lgebra  B' and h o m o m o r p h i s m s  h~ : B ~ B '  (l = 0, 1) such that  ho is 

one - to -one  and h~ is on to  B', except  when  ho = h~. 

6.6. OBSERVATION. (1) If B is Bonnet - r ig id  then  it has no on to  e n d o m o r -  

ph ism # id. 

(2) A Boo lean  a lgebra  B is Bonnet - r ig id  if: 

(*) For  no disjoint  non-zero  a, b E B is there  an e m b e d d i n g  of B r a into a 

h o m o m o r p h i c  image  of B r b. 

PROOF OF 6.6. (2) Suppose  h~ : B ~ B '  (1 = 1,0) contradic t  Bonnet-r igidi ty .  

Suppose  first hi is not  one - to -one ,  so for  some  a E B ,  a # 0 ,  h , ( a ) = 0 .  

For  any b E B, h , ( b - a )  = h t ( b ) - h t ( a ) =  h~(b). So B '  is a h o m o m o r p h i c  

image  of B I ( 1 - a )  and  B [ a  can be e m b e d d e d  into it, so we finish. 

If h~ is one- to -one ,  then hi is an i somorph i sm f rom B on to  B '  hence  

h ~ h o : B  ~ B is an embedd ing .  I t  is not  the ident i ty (otherwise ho = hi) so for  

some  a ~ B ,  a, h~lh(a) are disjoint  non-zero ;  choose  b = h~ho(a). 

6.7. DEFINITION. For  a set I of sequences  of ordinals  closed under  initial 

segments ,  we define Bt~r(I) as the Boo lean  a lgebra  gene ra t ed  freely by {x, : r /@ 

I}, except  that  

(1) x~^<~> M x~^<~> = 0 for  a # /3 ,  

(2) x~ > x~ when  T / ~  v, 

(3) if 7/ has finitely many  immedia t e  successors,  {~/^(a~): l < k,} then  x~ = 

(4)  if "0 "~ v, and every p, r/___ p < v has  a unique immediate successor, then 

X n = X,,. 
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6.8. CLAIM. (1) The only atoms o]: B,~,(I) are x,, rl has no immediate 

successor, or r I ,~ zq, ~'2 ~ ~q, z,2 comparable. 

(2) The set {x, : r / E  I} is a dense subset of B,r~(I). 

(3) Definition (6.7) is compatible with Definition 3.1(3). 

6.9. LEMMA. If  B is a homomorphic image of Bo = B t , r ( I )  then B is isomorphic 

to some B,r,(J), J representable in M.o,.o(I ). 

PROOF. So let W be an ideal of Bo such that B is isomorphic  to Bo / W. Let  

I1 = { r / E I : x . ~  W}; 

I~ is an approximat ion  to J. (Clearly I1 is closed under  initial segments by 6.7(2).) 

Let  

Ao = {'O ~ L : 7/ has < No immedia te  successor in I~, r/^(m), l < m and 

(x~ - U ,  x~^<~,~) ~ w},  

A1 = {r/@ I~ : r/ has < no immedia te  successor in I1, ~^(a~), l < m, and 

(x. - U ,  x.^<o,>) et W}, 

Let  

A3 = {(r/, v) :  '1 EAo,  '1 "~ v , l (v)  is limit, x,  - x ~ ,  E W when I ( , / ) =  < i < l (v)  

and for  no 7/'.~ r/ does (~/', v) have those properties}, 

A~ = {(r/, v ) E  A3: v ~ I , ,  x,  - x , ~  W}. 

J = I i  U {r /^ (a ) : r /  @A, ,  a minimal s.t. r / ^ ( a ) ~ I , }  

U {r l^ (a+l) : (r l ,  v ) E A ~ ,  r / ^ ( a ) E I l } .  

Now B t r r ( J )  is isomorphic  to B, and the lemma is clear. 

PROOF OF 6.4. We construct  as in 3.4, using Btr,(I,)  (i.e. x = trr  there)  but  

making the surgeries on atoms only. If B = Sur (i~, a * : a  < A), we can assume 

w.l.o.g. 

(*) if v E L ,  then for some r/, v ~ ' 0  E L ,  107 )=  to. 

Looking  at the construct ion,  it is clear that B = B,,,(I*) where  

I* = {r/l^~/2 ̂  • • • ^r/, : n < to, rh E L, for  some m < A, 

and for l <  n, l(rll) = to and a*~,., is x,, f rom L,}. 
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Now, in fact, it suffices to prove: 

(**) if a, b are disjoint non-zero, B '  a homomorphic image of B r b, then B I a 

cannot be embedded into /3'. 

Suppose (**) fails and a, b, B '  exemplify this. By Claim 6.8 and (*) there is 

r / E  I*, x~ =< a, l(r/) limit, and let a*~ = x.. Clearly B'  is also a homomorphic  

image of B(1 - x , ) ,  hence it is representable in M*o,. o (Yi<,,j,,,/~) and Btrr(I,~) is 

embeddable into B I a, hence into/3 ' .  By Lemma 6.9, /3 '  ~ Bm(I +) for some I ÷ 

representable in M.o,.o(Ys<,.j~/i ). We can conclude 

(***) B,,r(/~)is representable in M.o,,o(Ej<,,~,,~). 

But from this the contradiction is trivial. 

6.10. THEOREM. If  in the hypothesis of Theorem 6.4 we add "A < a' - )t "°'' 

then in the conclusion we can replace " of cardinality A " by " of cardinality X ". 

PROOF, Let { I ~ : a  <)t} exemplify the ()t,A, No, No)-bigness property. Let 

{A n : r / C  ~>A } be a family of 3, pairwise disjoint subsets of )t, each of power )t. 

For each r / E  ~;t, we can repeat the proof of 6.4 getting B"  =/3,r~(I*~), such that if 

u E I * ,  l (u)=o)k,  then for some a = a ~ ,  I ~ = { p ~ A : u ~ p E I * } ,  and 

a,  EA, r , .  Now for any CC~) t  let Bc be the direct sum of {B, : r / E  C}. If 

I CI = X, Bc satisfies 6.4(2) (hence by 6.6 is Bonnet-rigid hence has no onto 

endomorphism / id). 

6.11 THEOREM. Suppose A > No is regular, )t < X <--1 "o and B is a B.A. as 

constructed in 3.13 hence satisfying 3.13 (1), (2) (hence 3.13 (4)). Then there is a 

B.A. B~, B C_/31 ~ B e, /31 of power x, and B~ satisfies 3.13 (2) (hence 3.13 (4) and 

B1 satisfies the N~-chain condition as B~ C_ B~). 

PROOF. Let {a, :n  < w} be a maximal set of pairwise disjoint, non-zero, 

elements of B, such that I = {x E B:  for some n, x -< U~<, a~} is a maximal ideal 

of B (such a , ' s  exist by B 's  construction). Clearly for x E I, B I x - - B ~  Ix. 

Clearly for every n there is a free subset of B [ a, of power )t. Hence we can find 

in B ~ elements x~ (i < X) such that: 

(i) x~ fq a,  E B for every i and n, 

(i i)for every distinct i (1) , . .  " , i ( k ) < x  for every large enough n <~o, 

{x,o (q a, : l = 1, k} is free (in B,[ a,) .  

Let  B, be the subalgebra of B ~ generated by B U {x, : i < X}. Now B is dense 

in B °, hence in B~, and I is dense in B, so I is a dense ideal of B~. Let 

x, y E B~ - {0}, x fq y = 0 and suppose h is an embedding of B~ r x into B~ [ y, 

and we shall get a contradiction. W.l.o.g. x ~ I - {0}; so B~ I x = B [ x. If y ~ I, h 
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is an embedding of B r x into B r Y, contradiction. So w.l.o.g, x'  =< x ^ x ~ 0 

h ( x ) ~ I ;  hence B rx can be embedded into B~rL which is free, an easy 

contradiction. 

6.12. THEOREM. I f  h is strong limit of cofinality No then: 

(1) There is rigid B.A. of power A satisfying the Nl-chain condition; moreover, 

it is mono-rigid. 

(2) There is a Bonnet-rigid B.A. of power A. 

PROOF. Let A, < A be regular, E A, = A, (VX < A,+L)X ~" < A.+I (we can use 

much less, but there is no point in it). 

(1) Build B ° as in 3.13, IB°,] = A,+l. 

Now as A, is regular, we can choose the I,  we use for 3.13 (to satisfy as models 

the condition): 

(*) For any uncountable sequence of finite sequences and countable A, there 

is an uncountable subsequence which is indiscernible (in the model) over A for 

quantifier free formulas. We can replace "uncountable"  by "of power A, 

whenever a = cf A < 2 "°''. 

Hence BL. ~ satisfies (*). 

So if B. (n < to) are as in Claim 6.14 (below), B', the free product of B °, B,, 

then the direct sum of the B"  is as required (B '. is O.K.; as for the Io we can use 

(a., a,, 2 N°, No)-~Otr-unembeddability)., 

(2) The proof for Bonnet-rigid is similar. 

6.13. LEMMA. Suppose A, = A~, °, A, < A,+1, A = Z,<~A,. Then we can find 

Boolean algebras B, (n < to) such that: 

(a) II B .  II = A ~+. 
(b) B, satisfies the N~-chain condition. 

(c) There are no n < to, b, c E B., b f3 c = O, b ~ O, c ~ O, and embedding of 

B, f b into the completion of Z, ,<~B' ,  where B "  is Bm for m ~  n and B,, r c for 

m = n .  

( d ) A n y  B',  Z,,B,,C__B'C__(Y, mBm) c, is mono-rigid; moreover, there is no 

embedding of B '  r b into B '  r c for b E B',  b ~ O, c E B',  b f3 c = O. 

PROOF. Construct B. as in 3.4 using B,~(,÷3)(I), I E Kt~(,+3). 

6.14. CLAIM. There are B . A . B .  (n < to) such that: 

(1) B, has power cf (2N°), and has a dense countable subset, hence satisfies the 

strong N~-chain condition. 

(2) I f  B~  are B.A. satisfying (*) (in the proof of 6.12), then B. cannot be 
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embedded  into B",  B"  = E,,,,nB,, * B ~  (* - -  free product, E - -  direct sum) ,  nor 

can B ,  [ a, for a E Bn, a ~ O. Moreover, there is no homomorphism from any 

subalgebra of  B"  onto any Bn r a (a ~ O, a E B~). 

PROOF. We use the internal algebra of some subsets of the reals: essentially 

the same thing appears  in Bonne t  [2], so we do not  give a proof .  

We now define a variant  of Definit ion 1.2. 

6.15. DEFINITION. (1) We  say that I E K is ~b(.~0,-~i, . . . ,~)-ind~-unembed- 

dable in J E K provided  that:  if f is a funct ion f rom I to M ( J )  then for  some 

sequences  di (i < X) f rom L I(ti~) = l(~o) = l ( x O " "  letting g~ =/(~i~), (c~ : i < X) 

is q.f. indiscernible in I [i.e. if ~b(yl,- • -, yn) is quantifier  free, il < - - -  < ih ( X, 
j , < " ' < j k  < x ,  

I~[qb(F , , , . . . ,E , , )=-~b(6~ , , . . . ,~ ) ]  and I ~ b [ d o , - . - , d , ] .  

Note  that  letting d~ = ~(F~), also (~ : i < X) is q.f.-indiscernible in J. 

If the identity of ~, K is not clear we write (/x, K, ~b) instead of ~b. 

(2) We add the adjective "s t rongly"  if the embedding  is into some M * ( J )  and 

for i < X, and subterms ~-1, ~'2 of ~-, the t ruth value of T~(6~)<* ~-2(Ej) depends  on 

rl, r2 and the t ruth  values of i < j, i = ], j < i only. 

(3) We define " . . . i n d x - b i g n e s s . . . "  similarly. 

6.16. CLAIM. In the theorems of  §2 we can add ind.o everywhere. 

PROOF. Same proof.  
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